Topological, Total and Elastic Cross-sections for $K^+ p$, $\pi^+ p$ and $p p$ Interactions at 147-{GeV}/$c$

Brick, D. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Phys.Rev.D 25 (1982) 2794, 1982.
Inspire Record 11840 DOI 10.17182/hepdata.4111

The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering Crossovers from 50-GeV to 175-GeV

The Fermilab Single Arm Spectrometer Group collaboration Anderson, R.L. ; Anelli, E.F. ; Ayres, D.S. ; et al.
Phys.Rev.Lett. 37 (1976) 1025, 1976.
Inspire Record 108810 DOI 10.17182/hepdata.21092

A comparison of K±p and p±p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19±0.04 and 0.11±0.02 GeV2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively.

1 data table

KP AND PP CROSSOVER POINTS AT -T = 0.19 +- 0.04 AND 0.11 +- 0.02 GEV**2 (AVERAGE VALUES) RESPECTIVELY.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of 10-GeV/c pi+ and K+ Mesons and of 9-GeV/c Protons on Protons

Baglin, C. ; Briandet, P. ; Fleury, P. ; et al.
Nucl.Phys.B 98 (1975) 365-400, 1975.
Inspire Record 98834 DOI 10.17182/hepdata.31908

Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.

3 data tables

S=19.667 GEV**2, U=-T-17.867 GEV**2.

S=19.91 GEV**2, U=-T-17.704 GEV**2.

S=18.74 GEV**2.