Measurements of $p p \to \pi^+ d$ between 398-MeV and 572-MeV

Aebischer, D. ; Favier, B. ; Greeniaus, L.G. ; et al.
Nucl.Phys.B 108 (1976) 214-238, 1976.
Inspire Record 114332 DOI 10.17182/hepdata.35777

The reaction pp→ π + d was studied at incident proton energies of 398, 455, 497, 530 and 572 MeV. Measurements of dσ/dΩ at 455 and 572 MeV show the presence of pion d-waves in the pion-deuteron system. Asymmetry measurements yield similar conclusions. Total cross-section measurements agree with recent fits to earlier data.

5 data tables

NORMALIZED TO 4.38 MB/SR AT THETA = 13.19 DEG FOR P P ELASTIC.

NORMALIZED TO 4.68 MB/SR AT THETA = 13.35 DEG FOR P P ELASTIC.

NORMALIZED (RELATIVE ERROR 2.1 PCT) TO THE DATA OF RICHARD-SERRE ET AL., NP B20, 413 (1970) (ABSOLUTE SCALE UNCERTAINTY 4.5 PCT).

More…

Precision measurements of the pp ---> pi+ pn and pp ---> pi+ d reactions: Importance of long-range and tensor force effects

The COSY-GEM collaboration Budzanowski, A. ; Chatterjee, A. ; Hawranek, P. ; et al.
Phys.Rev.C 79 (2009) 061001, 2009.
Inspire Record 818511 DOI 10.17182/hepdata.52961

Inclusive measurements of pion production in proton--proton collisions in the forward direction were undertaken at 400 and 600 MeV at COSY using the Big Karl spectrograph. The high resolution in the $\pi^+$ momentum ensured that there was an unambiguous separation of the $pp\to {\pi}^+d/\pi^+pn$ channels. Using these and earlier data, the ratio of the production cross sections could be followed through the $\Delta$ region and compared with the predictions of final state interaction theory. Deviations are strongly influenced by long-range terms in the production operator and the tensor force in the final $pn$ system. These have been investigated in a realistic $pp\to\pi^+d/\pi^+pn$ calculation that includes $S \rightleftharpoons D$ channel coupling between the final nucleons. A semi-quantitative understanding of the observed effects is achieved.

6 data tables

Forward differential cross section for P P --> PI+ P N for beam momenta 1640 MeV.

Forward differential cross section for P P --> PI+ P N for beam momenta 1220 MeV.

Forward differential cross section for P P --> PI+ P N for beam momenta 955 MeV.

More…

Strong Energy Dependence of the Analyzing Power in the $p p \to d \pi^+$ Reaction and the Question of an Isovector Dibaryon Resonance. 2.

Bertini, R. ; Roy, G. ; Durand, J.M. ; et al.
Phys.Lett.B 203 (1988) 18-21, 1988.
Inspire Record 247925 DOI 10.17182/hepdata.29981

Forward angular distributions of the analysing power for the pp→d π + reaction have been measured at six energies T p =1.2, 1.4, 1.6, 1.8, 2.0, 2.3 GeV. A strong energy dependence is observed for A y 0 ( t =0) and A y 0 ( θ CM π =90°). The data are compared with the backward angular distributions previously published and suggest the existence of a resonant state in the pp system at the approximate energy of 2.7 GeV.

6 data tables

No description provided.

No description provided.

No description provided.

More…

A STRONG ENERGY DEPENDENCE OF THE ANALYZING POWER IN THE P P ---> D PI+ REACTION AND THE QUESTION OF AN ISOVECTOR DIBARYON RESONANCE

Bertini, R. ; Arvieux, J. ; Boivin, M. ; et al.
Phys.Lett.B 162 (1985) 77-80, 1985.
Inspire Record 221962 DOI 10.17182/hepdata.30330

The angular distributions of the analyzing power for the pp → dπ + reaction have been measured at seven energies T p = 1.2, 1.4, 1.6, 1.7, 1.8, 2.0 and 2.3 GeV. The data show a strong energy dependence with a structure centered at √ s π d = 2.66 GeV. Possible interpretations are presented in the frame of the OPE model and involving the question of the excitation of a dibaryon resonance.

7 data tables

No description provided.

No description provided.

No description provided.

More…

ANALYZING POWER IN THE REACTION P P ---> D PI+ FOR BEAM MOMENTA FROM 1.17-GEV/C TO 1.96-GEV/C

Corcoran, M.d. ; Calkin, M.m. ; Hoftiezer, J.h. ; et al.
Phys.Lett.B 120 (1983) 309-313, 1983.
Inspire Record 190882 DOI 10.17182/hepdata.30825

The analyzing power A y 0 in the reaction p↑p→dπ + has been measured using the polarized proton beam at Argonne National Laboratory's zero gradient synchrotron. Data were taken at beam momenta of 1.17, 1.47, 1.70, and 1.96 GeV/ c and for pion center of mass angles from 8° to 163°.

1 data table

No description provided.