ANGULAR DEPENDENCE OF YIELD AND SPECTRUM OF PROTONS PRODUCED IN p A INTERACTIONS AT 7.5-GeV/c

Bayukov, Yu.D. ; Gavrilov, V.B. ; Goryainov, N.A. ; et al.
ITEP-90-1981, 1981.
Inspire Record 168853 DOI 10.17182/hepdata.40246

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

INVESTIGATIONS OF THE ANGULAR DISTRIBUTIONS OF PROTONS EMITTED FROM NUCLEI IN pi+, pi-. INTERACTIONS AT MOMENTA OF 1.2-GeV/c TO 7.0-GeV/c

Barkov, B.P. ; Bayukov, Yu.D. ; Bobchenko, B.M. ; et al.
ITEP-58-1980, 1980.
Inspire Record 154421 DOI 10.17182/hepdata.40307

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Proton Spectra From 800-{MeV} Protons on Selected Nuclides

Chrien, R.E. ; Krieger, T.J. ; Sutter, R.J. ; et al.
Phys.Rev.C 21 (1980) 1014, 1980.
Inspire Record 143625 DOI 10.17182/hepdata.5224

The emission of protons from targets of Li6, Li, C12, Al27, Ca40, V51, Zr90, and Pb under bombardment from 800 MeV protons has been studied using a high resolution proton spectrometer. Spectra were measured at laboratory scattering angles of 5°, 7°, 9°, 11°, 13°, 15°, 20°, 25°, and 30° with special emphasis on the quasifree region. Outgoing momenta corresponding to the region of pion production were examined at 11° and 15°. Absolute cross sections have been derived by reference to known (p,p) scattering data at 800 MeV. The quasifree scattering has been compared to a distorted-wave impulse approximation analysis by summing over the unobserved (struck) nucleon. The systematics of proton production and the applicability of the distorted-wave impulse approximation analyses are discussed. NUCLEAR REACTIONS (p,p′) on Li6, Li, C12, Al27, Ca40, V51, Zr90, Pb; Ep=800 MeV, θL=5° to 30°; quasielastic scattering, DWIA analysis.

50 data tables

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.

More…

Production of Hadrons at $p_T$ From 0.5-{GeV}/$c$ to 2.5-{GeV}/$c$ in Proton - Nucleus Collisions at 70-{GeV} Energy

Abramov, V.V. ; Alekseev, A.V. ; Baldin, B.Yu. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 343, 1980.
Inspire Record 143799 DOI 10.17182/hepdata.18132

None

11 data tables

PRELIMINARY DATA.

PRELIMINARY DATA.

No description provided.

More…

INCLUSIVE SPECTRA OF PROTONS AND DEUTERONS EMITTED AT AN ANGLE OF 162-degrees FROM PROTON NUCLEON INTERACTIONS AT 2.2-GeV/c, 6-GeV/c AND 8.5-GeV/c

Burgov, N.A. ; Vlasov, M.K. ; Vorobev, L.S. ; et al.
Sov.J.Nucl.Phys. 30 (1979) 371, 1979.
Inspire Record 133478 DOI 10.17182/hepdata.40304

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of small angle elastic scattering of pions and protons by nuclei

Blieden, H.R. ; Finocchiaro, G. ; Goldhaber, A.S. ; et al.
Phys.Rev.D 11 (1975) 14, 1975.
Inspire Record 90186 DOI 10.17182/hepdata.4892

Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.

15 data tables

X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.

X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.

X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.

More…

High-energy proton scattering on nuclei

Klovning, A. ; Kofoed-Hansen, O. ; Schluepmann, K. ;
Nucl.Phys.B 54 (1973) 29-41, 1973.
Inspire Record 84178 DOI 10.17182/hepdata.32651

We have studied high-energy proton scattering on Be, C, Cu and Pb targets using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/ c , the square of the four-momentum transfer varied from t = 0.1 to t = 4.4 GeV 2 . We have recorded momentum distributions of scattered protons in the high-momentum range. An application of multiple-scattering theory yielded agreement of calculation and experimental results to within a ± 30% uncertainty of the former.

3 data tables

X ERROR D(OMEGA) = 0.0076 MSR.

X ERROR D(OMEGA) = 0.0076 MSR.

X ERROR D(OMEGA) = 0.0076 MSR.