New data on OZI rule violation in anti-p p annihilation at rest.

The OBELIX collaboration Bertin, A. ; Bruschi, M. ; De Castro, S. ; et al.
Phys.Lett.B 388 (1996) 450-456, 1996.
Inspire Record 420512 DOI 10.17182/hepdata.41681

The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.

1 data table

(C=CORRECTED) the ratio with phase space correctio. The annihilation in liquid hydrogen (C=LIQUID) and in hydrogen at 3 atm (C=P).


STUDY OF THE REACTION ANTI-P P ---> K+ K- PI+ PI- AT 8.3-GeV/c

Barnett, B. ; Burka, M. ; Chien, C.Y. ; et al.
Phys.Rev.D 30 (1984) 1871-1875, 1984.
Inspire Record 209439 DOI 10.17182/hepdata.23646

Results are presented from a study of the annihilation interaction p―p→K+K−π+π− at 8.3 GeV/c based on data from an experiment performed with the large-aperture solenoid spectrometer (LASS) at the Stanford Linear Accelerator Center. A measurement of the reaction cross section is made, and contributions to the final state from the φ, f0A20, K*(890), K*(1430), and ρ0 resonances are studied.

2 data tables

No description provided.

No description provided.


Properties of the Reaction anti-p p --> K+ K- pi+ pi- at 2.32-GeV/c

Chen, C.K. ; Fields, T. ; Rhines, D. ; et al.
Nucl.Phys.B 130 (1977) 269-294, 1977.
Inspire Record 5388 DOI 10.17182/hepdata.35223

An analysis of a data sample of 1296 events of the reaction p p → K + K − π + π − at 2.32 GeV/ c is presented. The reaction cross section is 300 ± 20 μb . A number of tests of C conservation were made with careful attention to possible systematic errors, yielding no clear evidence of C violation. Various quasi two-body and quasi three-body final states contributing to this reaction were studied. The final state φπ + π − appears to be produced via a Zweig's rule violating mechanism. An analysis of the quasi three-body final state, K ∗0 K − π + (with K ∗0 → K + π − ) plus charge conjugate, whose cross section is 84 ± 12 μ b, is given. The properties of this final state are compared with expectations based on a simple baryon exchange model, and poor agreement is found. A quark model allows a successful qualitative interpretation of the properties of this three-body final state.

1 data table

INCOHERENT BREIT-WIGNER PLUS PHASE SPACE FIT TO RESONANCE MASS SPECTRA. THE EQUAL CROSS SECTIONS FOR CHARGE CONJUGATE FINAL STATES ARE NOT TABULATED.