Collision-system and beam-energy dependence of anisotropic flow fluctuations

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 129 (2022) 252301, 2022.
Inspire Record 2017211 DOI 10.17182/hepdata.116554

Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at $\sqrt{s_{\rm NN}}$= 193 GeV, Cu+Au at $\sqrt{s_{\rm NN}}$= 200 GeV and Au+Au spanning the range $\sqrt{s_{\rm NN}}$= 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and T$\mathrel{\protect\raisebox{-2.1pt}{R}}$ENTo model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.

11 data tables

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the $\pi$ particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the K particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the p particle.

More…

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

53 data tables

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, Jaroslav ; et al.
JHEP 06 (2023) 176, 2023.
Inspire Record 2641480 DOI 10.17182/hepdata.139080

We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.

6 data tables

Ratios of NPE (non-photonic electron) to PHE (photonic electron) as a function of $p_{\rm T}$ in 0-10% central (yellow circles) and 40-80% peripheral (green squares) Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Vertical bars represent statistical uncertainties while boxes represent systematic uncertainties. Horizontal bars indicate the bin width.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 0-10% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 40-80% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

More…

Version 3
Centrality and transverse momentum dependence of $D^0$-meson production at mid-rapidity in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 99 (2019) 034908, 2019.
Inspire Record 1711377 DOI 10.17182/hepdata.95750

We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$\,$<$\,1) in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yields of $D^0$-mesons with transverse momentum $p_{T}$ $\lesssim 9$\,GeV/$c$ are reported in various centrality bins (0--10\%, 10--20\%, 20--40\%, 40--60\% and 60--80\%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($\pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($\phi,\Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$\,$>$\,4\,GeV/$c$ in central 0--10\% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.

22 data tables

$D^0$ (in terms of (D0 +D0)/2)) invariant yield at mid-rapidity ($|y| < 1$) vs transverse momentum for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed lines depict Levy function fits.

$D^0$ (in terms of (D0 +D0)/2)) spectra in pp collisions. Note, the $\sigma_{NSD}$ = 30 $m$b for p+p was used in the calculations.

Integrated $D^0$ cross section per nucleon-nucleon collision at mid-rapidity for $p_T >0$ (a) and $p_T >4$ GeV/c (b) as a function of centrality $N_{part}$. The statistical and systematic uncertainties are shown as error bars and brackets on the data points. The green boxes on the data points depict the overall normalization uncertainties in p+p and Au+Au data respectively.

More…

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

19 data tables

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

127 data tables

Distribution of the normalized jet yield as a function of detector jet-$p_{T}$ in 2015 data and simulation. The lower panel shows the ratio between data and simulation.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron longitudinal momentum fraction, $z$, in two different ranges of jet-$p_{T}$.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron momentum transverse to the jet axis, $j_{T}$, in two different ranges of jet-$p_{T}$.

More…

Version 2
Invariant Jet Mass Measurements in $pp$ Collisions at $\sqrt{s} = 200$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.D 104 (2021) 052007, 2021.
Inspire Record 1853218 DOI 10.17182/hepdata.102953

We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $\sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.

44 data tables

The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$.

The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.

The uncorrected SoftDrop groomed jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$.

More…

Two-particle correlations on transverse rapidity in Au+Au collisions at $\sqrt {s_{NN}}=200$ GeV at STAR

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 106 (2022) 044906, 2022.
Inspire Record 2071694 DOI 10.17182/hepdata.129290

Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.

137 data tables

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%.

More…

Version 2
Centrality and transverse momentum dependence of higher-order flow harmonics of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 064911, 2022.
Inspire Record 2051708 DOI 10.17182/hepdata.128148

We present high-precision measurements of elliptic, triangular, and quadrangular flow $v_{2}$, $v_{3}$, and $v_{4}$, respectively, at midrapidity ($|\eta|<1.0$) for identified hadrons $\pi$, $p$, $K$, $\varphi$, $K_s$, $\Lambda$ as a function of centrality and transverse momentum in Au+Au collisions at the center-of-mass energy $\sqrt{s_{\rm NN}}=$ 200 GeV. We observe similar $v_{n}$ trends between light and strange mesons which indicates that the heavier strange quarks flow as strongly as the lighter up and down quarks. The number-of-constituent-quark scaling for $v_{2}$, $v_{3}$, and $v_{4}$ is found to hold within statistical uncertainty for 0-10$\%$, 10-40$\%$ and 40-80$\%$ collision centrality intervals. The results are compared to several viscous hydrodynamic calculations with varying initial conditions, and could serve as an additional constraint to the development of hydrodynamic models.

94 data tables

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

More…