$\Lambda\rm{K}$ femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 103 (2021) 055201, 2021.
Inspire Record 1797451 DOI 10.17182/hepdata.104979

The first measurements of the scattering parameters of $\Lambda$K pairs in all three charge combinations ($\Lambda$K$^{+}$, $\Lambda$K$^{-}$, and $\Lambda\mathrm{K^{0}_{S}}$) are presented. The results are achieved through a femtoscopic analysis of $\Lambda$K correlations in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the $\Lambda\rm{K}^{+}$ interaction and attractive in the $\Lambda\rm{K}^{-}$ interaction. The data hint that the and $\Lambda\rm{K}^{0}_{S}$ interaction is attractive, however the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs ($\rm s\overline{s}$ in $\Lambda$K$^{+}$ and $\rm u\overline{u}$ in $\Lambda$K$^{-}$) or from different net strangeness for each system (S = 0 for $\Lambda$K$^{+}$, and S = $-2$ for $\Lambda$K$^{-}$). Finally, the $\Lambda$K systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle $\Lambda$ and K source distributions.

71 data tables

Invariant mass distributions in the 0--10\% centrality interval of (a) p$\uppi^{-}$ pairs showing the $\Lambda$ peak for V$^{0}$ candidates.

Invariant mass distributions in the 0--10\% centrality interval of $\uppi^{+}\uppi^{-}$ pairs showing the $\mathrm{K^{0}_{S}}$ peak for V$^{0}$ candidates.

Measured correlation function for the $\Lambda\mathrm{K^{+}}\oplus\overline{\Lambda}\mathrm{K^{-}}$ system in the 0--10\% centrality interval.

More…

Version 2
A new laboratory to study hadron-hadron interactions

The ALICE collaboration Collaboration, Alice ; Acharya, Shreyasi ; Adamova, Dagmar ; et al.
Nature 588 (2020) 232-238, 2020.
Inspire Record 1797617 DOI 10.17182/hepdata.100195

One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and so high-quality measurements exist only for hadrons containing up and down quarks. Here we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of p-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations. The large number of hyperons identified in proton-proton collisions at the LHC, together with an accurate modelling of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.

4 data tables

The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.

The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.

The p--$\Omega^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Omega}^{+}$ correlation function.

More…

Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 979, 2020.
Inspire Record 1762354 DOI 10.17182/hepdata.95121

The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $\sqrt{s}$ = 5.02 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC is reported. The D$^{\rm 0}$, D$^{\rm +}$, and D$^{\rm *+}$ mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval 3 < $p_{\rm T}$ < 24 GeV/c and correlated with charged particles having $p_{\rm T}$ > 0.3 GeV/c and pseudorapidity $|\eta| <$ 0.8. The properties of the correlation peaks appearing in the near- and away-side regions (for $\Delta \varphi \approx$ 0 and $\Delta \varphi \approx \pi$, respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p-Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.

51 data tables

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $3 < p_{\rm T} < 5$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $5 < p_{\rm T} < 8$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $8 < p_{\rm T} < 16$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

More…

Azimuthally differential pion femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adamova, Dagmar ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 118 (2017) 222301, 2017.
Inspire Record 1512303 DOI 10.17182/hepdata.77905

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm NN}}=2.76$ TeV. The measurements have been performed in the centrality range 0-50% and for pion pair transverse momenta $0.2 < k_{\rm T} < 0.7$ GeV/$c$. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider (RHIC). The final-state source eccentricity, estimated via $R_{\rm side}$ oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive; indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum $R_{\rm side}$ oscillations, but systematically underestimate the oscillation magnitude.

56 data tables

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

More…

Charge correlations using the balance function in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 723 (2013) 267-279, 2013.
Inspire Record 1211186 DOI 10.17182/hepdata.60298

In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity ($\Delta\eta$) and azimuthal angle ($\Delta\varphi$) in Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in $\Delta\varphi$ but fails to describe the correlations in $\Delta\eta$. A thermal blast-wave model incorporating local charge conservation and tuned to describe the $p_{\rm T}$ spectra and v$_2$ measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with $\sqrt{s_{\rm NN}}$: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in $\Delta\eta$ and $\Delta\varphi$ with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy--ion collision.

8 data tables

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 0-5%. Also shown in the second column is the result from the mixed data set.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 30-40%.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 70-80%.

More…

Charge separation relative to the reaction plane in Pb-Pb collisions at $\sqrt{s_{NN}}= 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 012301, 2013.
Inspire Record 1121161 DOI 10.17182/hepdata.60510

Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range $|\eta| < 0.8$ are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.

10 data tables

The centrality dependence of the three-particle charge-dependent correlator MEAN(COS(PHI(A)+COS(PHI(B)-2*PHI(RP)) measured with the cumulant method.

The centrality dependence of the correlator three-particle charge-dependent MEAN(COS(PHI(A)+COS(PHI(B)-2*PHI(RP)) measured from correlations with the reaction plane (RP) estimated using the TPC detector.

The centrality dependence of the correlator three-particle charge-dependent MEAN(COS(PHI(A)+COS(PHI(B)-2*PHI(RP)) measured from correlations with the reaction plane (RP) estimated using the VZERO detector.

More…

Directed flow of charged particles at mid-rapidity relative to the spectator plane in Pb-Pb collisions at sqrt{s_NN}=2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 111 (2013) 232302, 2013.
Inspire Record 1238980 DOI 10.17182/hepdata.61769

The directed flow of charged particles at mid-rapidity is measured in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta $p_{\rm T}$ between $1.2$ and $1.7$ GeV/$c$. Combined with the observation of a vanishing rapidity-even $p_{\rm T}$ shift along the spectator deflection this is strong evidence for dipole-like initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at mid-rapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.

12 data tables

Correlation between x components of the Q-vector of projectile (Qpx) and target (Qtx) spectators, MEAN(QpxQtx).

Correlation between y components of the Q-vector of projectile (Qpy) and target (Qty) spectators, MEAN(QpyQty).

Correlation between x and y components of the Q-vector of projectile (Qpx) and target (Qty) spectators, MEAN(QpxQty).

More…

Event-by-event mean $p_{\rm T}$ fluctuations in pp and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 74 (2014) 3077, 2014.
Inspire Record 1307102 DOI 10.17182/hepdata.66332

Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb--Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena.

8 data tables

Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 0.9 TeV.

Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 2.76 TeV.

Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 7 TeV.

More…

First observation of an attractive interaction between a proton and a multi-strange baryon

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.Lett. 123 (2019) 112002, 2019.
Inspire Record 1731784 DOI 10.17182/hepdata.91131

This work presents the first experimental observation of the attractive strong interaction between a proton and a multi-strange baryon (hyperon) $\Xi^-$. The result is extracted from two-particle correlations of combined $\rm{p}-\Xi^{-}$$\oplus$$\rm{\bar{p}}-\bar{\Xi}^{+}$ pairs measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}=5.02$ TeV at the LHC with ALICE. The measured correlation function is compared with the prediction obtained assuming only an attractive Coulomb interaction and a standard deviation in the range $[3.6,5.3]$ is found. Since the measured $\rm{p}-\Xi^{-}$$\oplus$$\rm{\bar{p}}-\bar{\Xi}^{+}$ correlation is significantly enhanced with respect to the Coulomb prediction, the presence of an additional, strong, attractive interaction is evident. The data are compatible with recent lattice calculations by the HAL-QCD Collaboration, with a standard deviation in the range $ [1.8,3.7]$. The lattice potential predicts a shallow repulsive $\Xi^-$ interaction within pure neutron matter at saturation densities and this implies stiffer equations of state for neutron-rich matter including hyperons. Implications of the strong interaction for the modeling of neutron stars are discussed.

2 data tables

The p$-$p $\oplus$ $\overline{\mathrm{p}}-\overline{\mathrm{p}}$ correlation function.

The p$-\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}-\overline{\Xi}^{-}$ correlation function.


Forward-backward multiplicity correlations in pp collisions at $\sqrt{s}$=0.9, 2.76 and 7 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 05 (2015) 097, 2015.
Inspire Record 1342496 DOI 10.17182/hepdata.68880

The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV. The measurement is performed in the central pseudorapidity region ($|\eta| < 0.8$) for the transverse momentum $p_{\rm T}>0.3$ GeV/$c$. Two separate pseudorapidity windows of width ($\delta \eta$) ranging from 0.2 to 0.8 are chosen symmetrically around $\eta=0$. The multiplicity correlation strength ($b_{\rm cor}$) is studied as a function of the pseudorapidity gap ($\eta_{\rm gap}$) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing $\eta_{\rm gap}$ and shows a non-linear increase with $\delta\eta$. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB $\eta$-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of $b_{\rm cor}$ is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to $b_{\rm cor}$ are found to increase with $p_{\rm T}$ in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. The observed dependencies of $b_{\rm cor}$ add new constraints on phenomenological models.

11 data tables

Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=0.9$ TeV.

Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=2.76$ TeV.

Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=7$ TeV.

More…