Jet Fragmentation and {QCD} Models in $e^+ e^-$ Annihilation at $c$.m. Energies Between 12-{GeV} and 41.5-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 41 (1988) 359-373, 1988.
Inspire Record 263859 DOI 10.17182/hepdata.15531

The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.

11 data tables

The errors include the statistical error and that from the correction procedure.

The errors include the statistical error and that from the correction procedure.

The errors include the statistical error and that from the correction procedure.

More…

Global Jet Properties at 14-{GeV} to 44-{GeV} Center-of-mass Energy in $e^+ e^-$ Annihilation

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 47 (1990) 187-198, 1990.
Inspire Record 294755 DOI 10.17182/hepdata.45170

Jet properties ine+e− annihilation at center of mass energies of 14, 22, 35 and 43.7 GeV were studied with the data collected in the TASSO detector at PETRA, using the same evaluation procedures for all the energies. The total hadronic cross section ratio for the center of mass energy interval 39–47 GeV was determined to be ℛ=4.11±0.05 (stat)±0.18(syst.) at\(\langle \sqrt s \rangle= 43 - 7\) GeV. Corrected distributions of global shape variables are presented as well as the inclusive charged particle distributions for scaled momentum and transverse momentum. The center of mass energy evolution of the average sphericity, thrust, aplanarity and particle momentum is shown.

8 data tables

R values. First systematic error comes from selection cuts and Monte Carlo, the second from the luminosity measurement and missing terms in the radiative correction calculations.

Normalised scaled momentum distributions. Data have combined statistical and systematic errors. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).

Normalised scaled momentum distributions. Data have combined statistical and systematic errors. The binning is as used in fits in the paper. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).

More…

Properties of Charm Jets Produced in $e^+ e^-$ Annihilation Near 34-{GeV}

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 135 (1984) 243-249, 1984.
Inspire Record 194050 DOI 10.17182/hepdata.30600

D ∗± production via e + e − → D ∗± X was studied at CM energies near 34 GeV. The charged particles produced in the hemisphere opposite to that of the D ∗ were used to investigate the fragmentation of charm jets. All spectra studied show a close similarity between the charm jet and the average jet obtained by summing over all quark flavours. The spectra of particles produced in the D ∗ hemisphere were used to study separately first rank and higher rank fragmentation.

2 data tables

THE C-JET IS THE JET IN THE HEMISPHERE OPPOSITE TO THAT CONTAINING THE D* MESON. DIVISION IS MADE BY A PLANE PERPENDICULAR TO THE THRUST AXIS.

No description provided.