Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

42 data tables

The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend

The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

More…

J/$\psi$ production as a function of charged-particle multiplicity in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}~=~8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 162, 2020.
Inspire Record 1792996 DOI 10.17182/hepdata.97018

Inclusive J/$\psi$ yields and average transverse momenta in p-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 8.16 TeV are measured as a function of the charged-particle pseudorapidity density with ALICE. The J/$\psi$ mesons are reconstructed at forward $(2.03 < y_{\rm cms} < 3.53)$ and backward ($-4.46 < y_{\rm cms} < -2.96$) center-of-mass rapidity in their dimuon decay channel while the charged-particle pseudorapidity density is measured around midrapidity. The J/$\psi$ yields at forward and backward rapidity normalized to their respective average values increase with the normalized charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The normalized average transverse momenta at forward and backward rapidity manifest a steady increase from low to high charged-particle pseudorapidity density with a saturation beyond the average value.

6 data tables

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at backward rapidity -4.46 < y_cms < -2.96 (Pb-going direction).

Mean transverse momentum of inclusive J/psi as a function of the relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

More…

Production of (anti-)$^3$He and (anti-)$^3$H in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 044906, 2020.
Inspire Record 1762356 DOI 10.17182/hepdata.94416

The transverse momentum ($p_{\rm{T}}$) differential yields of (anti-)$^3$He and (anti-)$^3$H measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV with ALICE at the Large Hadron Collider (LHC) are presented. The ratios of the $p_{\rm{T}}$-integrated yields of (anti-)$^3$He and (anti-)$^3$H to the proton yields are reported, as well as the $p_{\rm{T}}$ dependence of the coalescence parameters $B_3$ for (anti-)$^3$He and (anti-)$^3$H. For (anti-)$^3$He, the results obtained in four classes of the mean charged-particle multiplicity density are also discussed. These results are compared to predictions from a canonical statistical hadronization model and coalescence approaches. An upper limit on the total yield of $^4\bar{\mathrm{He}}$ is determined.

24 data tables

Transverse momentum spectra of (anti-)$^3\mathrm{He}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

Transverse momentum spectra of (anti-)$^3\mathrm{H}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

$^3\overline{\mathrm{He}} /\,^3\mathrm{He}$ ratio in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

J/$\psi$ production as a function of charged-particle pseudorapidity density in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Adamová, D. ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 776 (2018) 91-104, 2018.
Inspire Record 1589286 DOI 10.17182/hepdata.80256

We report measurements of the inclusive J/$\psi$ yield and average transverse momentum as a function of charged-particle pseudorapidity density ${\rm d}N_{\rm ch}/{\rm d}\eta$ in p-Pb collisions at $\sqrt{s_{\rm NN}}= 5.02$ TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/$\psi$ yield with normalised ${\rm d}N_{\rm ch}/{\rm d}\eta$, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/$\psi$ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

6 data tables

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for forward rapidities 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for backward rapidities -4.46 < y_cms < -2.96 (Pb-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for central rapidities -1.37 < y_cms < 0.43.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 772 (2017) 567-577, 2017.
Inspire Record 1507090 DOI 10.17182/hepdata.78365

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

5 data tables

Charged-particle pseudorapidity density for ten centrality classes over a broad $\eta$ range in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02\,\mathrm{TeV}$. Boxes around the points reflect the total uncorrelated systematic uncertainties, while the filled squares on the right reflect the correlated systematic uncertainty (evaluated at $\eta=0$). Statistical errors are generally insignificant and smaller than the markers. Also shown is the reflection of the $3.5<\eta<5$ values around $\eta=0$ (open circles). The line corresponds to fits of the difference between two Gaussians centred at $\eta=0$ ($f_{\text{GG}}$) [PLB754.373] to the data.

Charged-particle pseudorapidity density at midrapidity in most perihperhal (80-90%) Pb-Pb collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5.02\,\mathrm{TeV}$.

Total number of charged particles as a function of the mean number of participating nucleons [PRC88.044909]. The total charged-particle multiplicity is given as the integral over $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ over the measured region ($-3.5<\eta<5$) and extrapolations from fitted functions in the unmeasured regions. The contribution from unmeasured $\eta$ regions amounts to $\approx30\%$ of the total number of charged particles. The uncertainty on the extrapolation to the unmeasured pseudorapidity region is smaller than the size of the markers. The contribution to the systematic uncertainties from the centrality determination and electromagnetic processes are vanishing compared to the contribution from the largest differences between the fitted functions. A function inspired by factorisation [PRC83.024913] is fitted to the data, and the best fit yields $a=51.5\pm7.3$, $b=0.16\pm0.05$.

More…

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Nature Phys. 13 (2017) 535-539, 2017.
Inspire Record 1471838 DOI 10.17182/hepdata.77284

At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the Quark-Gluon Plasma (QGP) [1]. Such an extreme state of strongly-interacting QCD (Quantum Chromo-Dynamics) matter is produced in the laboratory with high-energy collisions of heavy nuclei, where an enhanced production of strange hadrons is observed [2-6]. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions [7], is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions [8,9]. Yet, enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity pp collisions. We find that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with p-Pb collision results [10,11] indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

52 data tables

$K^{0}_{S}$ transverse momentum spectrum: V0M Class I (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class II (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class III (pp at $\sqrt{s}=7$ TeV).

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 245, 2016.
Inspire Record 1418181 DOI 10.17182/hepdata.72720

The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) mesons has been measured in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. K$^{*0}$ and $\phi$ are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range $-0.5 < y <0$. The transverse momentum spectra, measured as a function of the multiplicity, have p$_{\mathrm{T}}$ range from 0 to 15 GeV/$c$ for K$^{*0}$ and from 0.3 to 21 GeV/$c$ for $\phi$. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at $\sqrt{s}$ = 7 TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. In Pb-Pb and p-Pb collisions, K$^{*0}$ and $\phi$ probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-$\phi$ ratio are discussed as a function of the multiplicity of the event. The short-lived K$^{*0}$ is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.

30 data tables

Average charged particle pseudo-rapidity density, $\langle\mathrm{d}N_{\rm ch}/\mathrm{d}\eta_{\mathrm{lab}}\rangle$, measured at mid-rapidity in visible cross section event classes and average number of colliding nucleons, $\langle\mathrm{N_{coll}}\rangle$. Multiplicity classes are defined using the V0A estimator; values for $\langle\mathrm{d}N_{\rm ch}/\mathrm{d}\eta_{\mathrm{lab}}\rangle$ are corrected for vertexing and trigger efficiency. Since statistical uncertainties are negligible, only total systematic uncertainties are reported.

$p_{\rm T}$-differential yield of (K$^{*0}$ + $\overline{K^{*0}}$)/2 in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (NSD). Additional systematic error: +- 3.1% (normalization).

$p_{\rm T}$-differential yield of (K$^{*0}$ + $\overline{K^{*0}}$)/2 in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-20% multiplicity class).

More…

Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $\mathbf{\sqrt{{\textit s}}}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 09 (2015) 148, 2015.
Inspire Record 1366028 DOI 10.17182/hepdata.69529

Prompt D meson and non-prompt J/$\psi$ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D$^0$, D$^+$ and D$^{*+}$ mesons are measured in five $p_{\rm T}$ intervals from 1 to 20 GeV/$c$ and for $|y|<0.5$ via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D$^0$-meson relative yield is also measured as a function of the relative multiplicity at forward pseudorapidity. The non-prompt J/$\psi$, i.e. the B hadron, contribution to the inclusive J/$\psi$ production is measured in the di-electron decay channel at central rapidity. It is evaluated for $p_{\rm T}>1.3$ GeV/$c$ and $|y|<0.9$, and extrapolated to $p_{\rm T}>0$. The fraction of non-prompt J/$\psi$ in the inclusive J/$\psi$ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.

7 data tables

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are per inelastic event.

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are not corrected by the trigger selection efficiency, they are normalised to the visible cross section.

D$^{0}$-meson relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for pp collisions at $\sqrt{s}=7$ TeV as a function of the relative average multiplicity in the V0 detector, $N_{V0} \big/ \langle N_{V0} \rangle$. The yields reported here are normalised to the inelastic cross section.

More…