Measurement of the eta and eta' transition form factors at q**2 = 112-GeV**2.

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Bona, M. ; et al.
Phys.Rev.D 74 (2006) 012002, 2006.
Inspire Record 716277 DOI 10.17182/hepdata.22085

We report a study of the processes e+e- -> eta gamma and e+e- -> etaprime gamma at a center-of-mass energy of 10.58 GeV, using a 232 fb^-1 data sample collected with the BABAR detector at the PEP-II collider at SLAC. We observe 20+6-5 eta gamma and 50+8-7 etaprime gamma events over small backgrounds, and measure the cross sections sigma(e+e- -> eta gamma) =4.5+1.2-1.1(stat)+-0.3(sys) fb and sigma(e+e- -> etaprime gamma)=5.4+-0.8(stat)+-0.3(sys) fb. The corresponding transition form factors at q^2 = 112 GeV^2 are q^2|F_eta(q^2)|=0.229+-0.030+-0.008 GeV, and q^2|F_etaprime(q^2)|=0.251+-0.019+-0.008 GeV, respectively.

3 data tables

Measured cross sections.

Undressed cross sections calculated by applying a 7.5 +- 0.2 PCT correction for vacuum polarization.

Transition form factors at Q**2 = 112 GeV**2.


Measurement of the Pion Form-factor in the Timelike Region for $q^2$ Values Between .1-{GeV}/$c^2$ and .18-{GeV}/$c^2$

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 138 (1984) 454-458, 1984.
Inspire Record 195944 DOI 10.17182/hepdata.30572

The EM form factor of the pion has been studied in the time-like region by measuring σ (e + e − → π + π − ) normalized to σ (e + e − → μ + μ − ). Results have been obtained for q 2 down to the physical threshold.

1 data table

No description provided.


A Measurement of the Pion Charge Radius

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 146 (1984) 116-120, 1984.
Inspire Record 201598 DOI 10.17182/hepdata.30511

We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.

1 data table

Errors are statistical only.


A Measurement of the Kaon Charge Radius

Amendolia, S.R. ; Batignani, G. ; Beck, G.A. ; et al.
Phys.Lett.B 178 (1986) 435-440, 1986.
Inspire Record 231129 DOI 10.17182/hepdata.30242

The negative kaon electromagnetic form factor has been measured in the space-like q 2 range 0.015–0.10 (GeV/ c ) 2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius 〈 r 2 K 〉 = 0.34 ± 0.05 fm 2 . From data collected simultaneously for πe scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be 〈 r 2 π 〉 − 〈 r 2 K = 0.1 0 ± 0.045 fm 2 .

1 data table

Ratio is assumed free of systematic error.


A Measurement of the Space - Like Pion Electromagnetic Form-Factor

The NA7 collaboration Amendolia, S.R. ; Arik, M. ; Badelek, B. ; et al.
Nucl.Phys.B 277 (1986) 168, 1986.
Inspire Record 228132 DOI 10.17182/hepdata.33611

The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .

1 data table

No description provided.