A Study of $K^0_S$, $\Lambda$ and $\bar{\Lambda}$ Production in 60-{GeV} and 200-{GeV} Per Nucleon O Au and $p$ Au Collisions With a Streamer Chamber Detector at the {CERN} {SPS}

The NA35 collaboration Bamberger, A. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 43 (1989) 25, 1989.
Inspire Record 276686 DOI 10.17182/hepdata.15456

The production of neutral strange particlesKso, Λ and\(\bar \Lambda \) has been studied in 60 and 200 GeV per nucleon OAu and pAu collisions with the streamer chamber vertex spectrometer of the NA35 experiment at the CERN-SPS accelerator. Ratios of neutral strange particle production to negatively charged particle production in selected regions of phase space were measured to be the same in OAu and pAu reactions. The rates of strange particle production in central OAu collisions are about a factor of 16 higher than in pAu collisions when compared in the same regions of phase space. If an enhancement of strange particle production in OAu collisions relative to pAu collisions is considered to be a signature for quark-gluon plasma formation, no evidence supporting it is observed. The experimental results are compared to the Lund FRITIOF model.

22 data tables

No description provided.

No description provided.

No description provided.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Azimuthal asymmetry of neutral pion emission in Au + Au reactions at 1-GeV/u

Venema, L.B. ; Braak, H. ; Lohner, H. ; et al.
KVI-983, 1993.
Inspire Record 359163 DOI 10.17182/hepdata.30556

None

4 data tables

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF PI0 HAVE BEEN FITTED BY: D(N)/D(PHI)=N*(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLEOF PI0 RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). THE 17 PCT OF ALL NONPERIPHERAL EVENTS HAS BEEN REMOVED (SEE PAPER).

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF CHARGED PARTICLES HAVE BEEN FITTED BY : D(N)/D(PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THEAZIMUTHAL ANGLE OF CHARGED PARTICLE RELATIVE TO THE FOLLOWING COORDINATE SYSTEM : Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTU M CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF NEUTRONS HAVE BEEN FITTED BY: D(N)/D (PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLE OF NEUTRON RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTEDALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FRO M TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).

More…

Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

The NA35 collaboration Alber, T. ; Appelshauser, H. ; Bachler, J. ; et al.
Eur.Phys.J.C 2 (1998) 643-659, 1998.
Inspire Record 450611 DOI 10.17182/hepdata.34289

The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.

43 data tables

No description provided.

No description provided.

The value YRAP = 4PI is the extrapolation for 4PI acceptance.

More…

Charged and Identified Particles in the Hadronic Decay of W Bosons and in e+e- -> q qbar from 130 to 200 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 18 (2000) 203-228, 2000.
Inspire Record 526164 DOI 10.17182/hepdata.43294

Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.

16 data tables

Corrected multiplicites and dispersions of charged particles produced in hadronic decays from QQBAR events. The 200 GeV results are a weighted average fromthe 192, 196 and 200 GeV data.

Average multiplicities of identified hadrons produced in hadronic decays from QQBAR events.

Corrected multiplicites and dispersions of charged particles produced in fully hadronic W decays from two W 4Q and 2Q events.

More…

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

7 data tables

Average number of charged particles as a function of the relative azimuthal angle between the individual charged particle and the overall leading jet angle.

Average scalar PT sum of charged particles as a function of the relative azimuthal angle between the individual charged particle for 3 different lower limits of the leading jet PT. and the overall jet angle.

The average number of toward(DPHI < 60 DEG), transverse (DPHI 60 TO 120 DEG) and away (DPHI > 120 DEG) charged particles as a function of the PT of the leading charged jet. The data in this table are from the Min-Bias events.

More…

Evidence of b-jet quenching in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 113 (2014) 132301, 2014.
Inspire Record 1269454 DOI 10.17182/hepdata.68931

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (pt) range of 80-250 GeV, and within pseudorapidity abs(eta < 2). The nuclear modification factor (R[AA]) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of pt studied, and is centrality dependent. The R[AA] is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet pt range studied.

13 data tables

The b-jet yield as a function of pT is for the 0-100% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 0-10% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 10-30% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

More…

Experimental Test of the Flavor Independence of the Quark - Gluon Coupling Constant

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 138 (1984) 317-324, 1984.
Inspire Record 199470 DOI 10.17182/hepdata.6609

Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.

3 data tables

No description provided.

No description provided.

No description provided.


Experimental properties of gluon and quark jets from a point source.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 217-238, 1999.
Inspire Record 496755 DOI 10.17182/hepdata.49193

Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.

9 data tables

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

More…

First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Rev.D 108 (2023) 092004, 2023.
Inspire Record 2624308 DOI 10.17182/hepdata.88293

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

14 data tables

Differential cross section for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Differential cross section for events with Pomeron-Proton ($\mathrm{I\!P}\mathrm{p} + \gamma \mathrm{p}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Reconstruction level differential cross section spectla, obtained for the central acceptance, $|\eta| < 3$, for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology compared to the to the EPOS-LHC predictions, broken down into the non-diffractive (ND), central diffractive (CD), single diffractive (SD) and double diffractive (DD) components. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

More…