A New measurement of the spin dependent structure function g1(x) of the deuteron

The Spin Muon collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 357 (1995) 248-254, 1995.
Inspire Record 397392 DOI 10.17182/hepdata.47847

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q 2 < 60 GeV 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

4 data tables

Results on the virtual photon deuteron asymmetry.

Results on the spin structure function of the deuteron.

Results on the spin structure function of the neutron.

More…

A measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon proton scattering.

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Phys.Lett.B 206 (1988) 364, 1988.
Inspire Record 252744 DOI 10.17182/hepdata.29952

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01< x <0.7). The spin-dependent structure function g 1 ( x ) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

1 data table

THE AVERAGE VALUES OF Q**2 IN EACH X-BIN ARE AS FOLLOWS: X=0.015,Q2=3.5: X=0.025,Q2=4.5: X=0.035,Q2=6.0: X=0.050,Q2=8.0: X=0.078,Q2=10.3: X=0.124,Q2=12.9: X=0.175,Q2=15.2: X=0.248,Q2=18.0: X=0.344,Q2=22.5: X=0.466,Q2=29.5.


An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons.

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Nucl.Phys.B 328 (1989) 1, 1989.
Inspire Record 280143 DOI 10.17182/hepdata.49587

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured in the range 0.01<×<0.7. The spin dependent structure function g 1 ( x ) for the proton has been determined and, combining the data with earlier SLAC measurements, its integral over x found to be 0.126±0.010(stat.)±0.015(syst.), in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Biorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These integrals lead to the conclusion, in the naïve quark parton model, that the total quark spin constitutes a rather small fraction of the spin of the nucleon. Results are also presented on the asymmetries in inclusive hadron production which are consistent with the above picture.

7 data tables

THE MEAN Q**2 FOR EACH OF THE 10 VALUES OF X BELOW ARE 3.5,4.5,6.0, 8.010.3,12.9,15.2,18.0,22.5,29.5.

No description provided.

No description provided.

More…

Final COMPASS results on the deuteron spin-dependent structure function $g_1^{\rm d}$ and the Bjorken sum rule

The COMPASS collaboration Adolph, C. ; Aghasyan, M. ; Akhunzyanov, R. ; et al.
Phys.Lett.B 769 (2017) 34-41, 2017.
Inspire Record 1501480 DOI 10.17182/hepdata.78374

Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.

6 data tables

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.

Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.

More…

Measurement of inclusive spin structure functions of the deuteron with CLAS.

The CLAS collaboration Yun, J. ; Kuhn, S.E. ; Dodge, G.E. ; et al.
Phys.Rev.C 67 (2003) 055204, 2003.
Inspire Record 604799 DOI 10.17182/hepdata.41972

We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.

7 data tables

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

Measurement of the neutron spin structure function g1(n) with a polarized He-3 internal target.

The HERMES collaboration Ackerstaff, K. ; Airapetian, A. ; Akushevich, I. ; et al.
Phys.Lett.B 404 (1997) 383-389, 1997.
Inspire Record 440904 DOI 10.17182/hepdata.44586

Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function $g_1~n(x,Q~2)$ in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized $~3$He internal gas target. The data cover the kinematic range $0.023<x<0.6$ and $1 (GeV/c)~2 < Q~2 <15 (GeV/c)~2$. The integral $\int_{0.023}~{0.6} g_1~n(x) dx$ evaluated at a fixed $Q~2$ of $2.5 (GeV/c)~2$ is $-0.034\pm 0.013(stat.)\pm 0.005(syst.)$. Assuming Regge behavior at low $x$, the first moment $\Gamma_1~n=\int_0~1 g_1~n(x) dx$ is $-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.)$.

2 data tables

No description provided.

Data extrapolated to full x region. Second systematic error is the error on this extrapolation.


Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Measurement of the proton and deuteron spin structure function g2 and asymmetry A2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 76 (1996) 587-591, 1996.
Inspire Record 400029 DOI 10.17182/hepdata.19584

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.

8 data tables

Proton data measured in the 4.5 degree spectrometer.

Proton data measured in the 7.0 degree spectrometer.

Deuteron data measured in the 4.5 degree spectrometer.

More…

Measurement of the proton spin structure function g1(p) with a pure hydrogen target.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akushevich, I. ; et al.
Phys.Lett.B 442 (1998) 484-492, 1998.
Inspire Record 473421 DOI 10.17182/hepdata.44220

A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).

2 data tables

The second systematic errors listed for G1/F1 (G1) are the uncertainties concerning R (R and F2).

G1 evolved at Q2 = 2.5 GeV**2, assuming G1/F1 to be independent of Q2. The second systematic errors listed for are the uncertainties concerning R and F2.