The Q**2-dependence of the neutron spin structure function g2(n) at low Q**2.

Kramer, K. ; Armstrong, D.S. ; Averett, T.D. ; et al.
Phys.Rev.Lett. 95 (2005) 142002, 2005.
Inspire Record 684137 DOI 10.17182/hepdata.31614

We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.

1 data table

Measured values of G1N ang G2N.


Precision measurement of the neutron spin asymmetry A(1)(n) and spin-flavor decomposition in the valence quark region.

The Jefferson Lab Hall A collaboration Zheng, X. ; Aniol, K. ; Armstrong, D.S. ; et al.
Phys.Rev.Lett. 92 (2004) 012004, 2004.
Inspire Record 625890 DOI 10.17182/hepdata.31679

We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.

1 data table

Measured values of A1 and G1/F1.