Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Measurements of Dielectron Production in Au$+$Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV from the STAR Experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 92 (2015) 024912, 2015.
Inspire Record 1357992 DOI 10.17182/hepdata.73504

We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum ($p_{\rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $\rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{\rm T}$ acceptance, the enhancement factor is 1.76 $\pm$ 0.06 (stat.) $\pm$ 0.26 (sys.) $\pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{\rm T}$ dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $\pm$ 0.10. Models that assume an in-medium broadening of the $\rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $\omega$ and $\phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $\phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.

50 data tables

Estimated electron purity vs. momentum in 200 GeV Au + Au collisions.

Acceptance correction factor for unlike-sign and like-sign pair difference from 200 GeV Au+Au minimum-bias collisions.

Ratio of the same-event like-sign to the mixed event unlike-sign distributions.

More…

Strange meson enhancement in Pb Pb collisions.

The NA44 collaboration Bearden, I. ; Bøggild, H. ; Boissevain, J. ; et al.
Phys.Lett.B 471 (1999) 6-12, 1999.
Inspire Record 504074 DOI 10.17182/hepdata.31360

The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.

4 data tables

Inverse slope paramters of the (1/MT)*DN/DMT distribution.

Rapidity distributions for K+ and K- production.. Statistical and systematic errors added in quadrature.

Rapidity distributions for PI+ and PI- production.. Statistical and systematic errors added in quadrature.

More…

Charged kaon and pion production at midrapidity in proton nucleus and sulphur nucleus collisions.

The NA44 collaboration Boggild, H. ; Boissevain, J. ; Dodd, J. ; et al.
Phys.Rev.C 59 (1999) 328-335, 1999.
Inspire Record 474831 DOI 10.17182/hepdata.25575

The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Q**2 evolution of the photon structure function F2(gamma).

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 411 (1997) 387-401, 1997.
Inspire Record 446673 DOI 10.17182/hepdata.47450

New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.

5 data tables

Measured values of F2 for the SW sample.

Measured values of F2 for the FD sample.

F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).

More…

Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Collective expansion in high energy heavy ion collisions.

The NA44 collaboration Bearden, I.G. ; Boggild, H. ; Boissevain, J. ; et al.
Phys.Rev.Lett. 78 (1997) 2080-2083, 1997.
Inspire Record 426801 DOI 10.17182/hepdata.52345

Transverse mass spectra of pions, kaons, and protons from the symmetric heavy-ion collisions 200 A GeV S+S and 158 A GeV Pb+Pb, measured in the NA44 focusing spectrometer at CERN, are presented. The mass dependence of the slope parameters provides evidence of collective transverse flow from expansion of the system in heavy-ion induced central collisions.

3 data tables

(1/MT)*d(N)/d(MT) = A *exp(-MT/SLOPE).

(1/MT)*d(N)/d(MT) = A *exp(-MT/SLOPE).

The SLOPE from the parameterization of (1/MT)*d(N)/d(MT) = A*exp(-MT/SLOPE)is fitted as follows SLOPE = CONST(C=1) + M(hadron)*CONST(C=2)**2.


Measurement of small angle anti-proton - proton elastic scattering at S**(1/2) = 546-GeV and 1800-GeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 5518-5534, 1994.
Inspire Record 359411 DOI 10.17182/hepdata.22369

Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.

4 data tables

Final results (systematic errors included).

Final results (systematic errors included).

Statistical errors only. Data supplied by S. Belforte.

More…

Precise Comparison of Anti-proton - Proton and Proton Proton Forward Elastic Scattering at $\sqrt{s}=24$.3-{GeV}

The UA6 collaboration Breedon, R.E. ; Chapin, T.J. ; Cool, R.L. ; et al.
Phys.Lett.B 216 (1989) 459-465, 1989.
Inspire Record 267044 DOI 10.17182/hepdata.29854

We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.

3 data tables

Data requested from authors.

No description provided.

Nuclear slopes fixed to world average.


Study of $\eta \pi^+ \pi^-$ States in the $\rho^\prime$ (1600) Mass Region Photoproduced in the Reaction $\gamma p \to \eta \pi^+ \pi^- p$ at Photon Energies of 20-{GeV} to 70-{GeV}

The Omega Photon collaboration Atkinson, M. ; Axon, T.J. ; Barberis, D. ; et al.
Z.Phys.C 30 (1986) 531, 1986.
Inspire Record 218611 DOI 10.17182/hepdata.15991

In diffractive photoproduction ofηπ+π−, the two-body substatesηρ0 andA2π are found to contribute significantly to the cross-section forηπ+π− masses below 2.4 GeV. From a spin-parity analysis the branching ratio, ρ′(1600)→ηρ/ρ′(1600)→, is determined to be <0.02 at the 68.3% confidence level. TheA2π component shows an enhancement around 1.7 GeV. The spin-parity analysis indicates a probable contribution to this signal from exclusive photoproduction of theg(1690).

6 data tables

No description provided.

Not corrected for 35% background under the eta --> gamma gamma peak.

Not corrected for 35% background under the ETA --> GAMMA GAMMA peak.

More…