Forward production of charged pions with incident $\pi^{\pm}$ on nuclear targets measured at the CERN PS

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Nucl.Phys.A 821 (2009) 118-192, 2009.
Inspire Record 813159 DOI 10.17182/hepdata.51841

Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $0.5 \GeVc \leq p \le 8.0 \GeVc$ and angle $0.025 \rad \leq \theta \le 0.25 \rad$ in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections $ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} $ mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulation

154 data tables

Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.05 to 0.10 radians.

Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.10 to 0.15 radians.

Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.15 to 0.20 radians.

More…

Forward pi+/- production in p-O2 and p-N2 interactions at 12 GeV/c

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Astropart.Phys. 30 (2008) 124-132, 2008.
Inspire Record 790079 DOI 10.17182/hepdata.50531

Measurements of double-differential charged pion production cross-sections in interactions of 12 GeV/c protons on O_2 and N_2 thin targets are presented in the kinematic range 0.5 GeV/c < p_{\pi} < 8 GeV/c and 50 mrad < \theta_{\pi} < 250 mrad (in the laboratory frame) and are compared with p--C results. For p--N_2 (p--O_2) interactions the analysis is performed using 38576 (7522) reconstructed secondary pions. The analysis uses the beam instrumentation and the forward spectrometer of the HARP experiment at CERN PS. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range. In particular, the present results allow the common hypothesis that p--C data can be used to predict the p--N_2 and p--O_2 pion production cross-sections to be tested.

12 data tables

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 50 to 100 mrad.

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 100 to 150 mrad.

Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 150 to 200 mrad.

More…

Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 52 (2007) 29-53, 2007.
Inspire Record 744551 DOI 10.17182/hepdata.43065

The double-differential production cross-section of positive pions, $d^2\sigma^{\pi^{+}}/dpd\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < $p_{\pi}$ < 6.5 GeV/c and 30 mrad < $\theta_{\pi}$ < 210 mrad in the laboratory frame.

6 data tables

Double differential cross section for PI+ production in the angular range 30 to 60 MRAD. Errors are point-to-point only.

Double differential cross section for PI+ production in the angular range 60 to 90 MRAD. Errors are point-to-point only.

Double differential cross section for PI+ production in the angular range 90 to 120 MRAD. Errors are point-to-point only.

More…

Measurement of the production cross-section of positive pions in p Al collisions at 12.9-GeV/c.

The HARP collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Radicioni, E. ; et al.
Nucl.Phys.B 732 (2006) 1-45, 2006.
Inspire Record 695147 DOI 10.17182/hepdata.41874

A precision measurement of the double-differential production cross-section, ${{d^2 \sigma^{\pi^+}}}/{{d p d\Omega}}$, for pions of positive charge, performed in the HARP experiment is presented. The incident particles are protons of 12.9 GeV/c momentum impinging on an aluminium target of 5% nuclear interaction length. The measurement of this cross-section has a direct application to the calculation of the neutrino flux of the K2K experiment. After cuts, 210000 secondary tracks reconstructed in the forward spectrometer were used in this analysis. The results are given for secondaries within a momentum range from 0.75 GeV/c to 6.5 GeV/c, and within an angular range from 30 mrad to 210 mrad. The absolute normalization was performed using prescaled beam triggers counting protons on target. The overall scale of the cross-section is known to better than 6%, while the average point-to-point error is 8.2%.

6 data tables

Double differential PI+ production cross section in the angular range 30 to 60 mrad.. Errors shown are point-to-point only.

Double differential PI+ production cross section in the angular range 60 to 90 mrad.. Errors shown are point-to-point only.

Double differential PI+ production cross section in the angular range 90 to 120 mrad.. Errors shown are point-to-point only.

More…

Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions I: Beryllium Nuclei and Beam Momenta of +8.9 Gev/c and -8.0 Gev/c

The HARP-CDP Group collaboration Bolshakova, A. ; Boyko, I. ; Chelkov, G. ; et al.
Eur.Phys.J.C 62 (2009) 293-317, 2009.
Inspire Record 811688 DOI 10.17182/hepdata.51594

We report on double-differential inclusive cross-sections of the production of secondary protons, deuterons, and charged pions and kaons, in the interactions with a 5% nuclear interaction length thick stationary beryllium target, of a +8.9 GeV/c proton and pion beam, and a -8.0 GeV/c pion beam. Results are given for secondary particles with production angles between 20 and 125 degrees.

76 data tables

Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 20 to 30 degrees.

Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 30 to 40 degrees.

Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 40 to 50 degrees.

More…

Pion Production by Protons on a Thin Beryllium Target at 6.4, 12.3, and 17.5 GeV/c Incident Proton Momenta

The E910 collaboration Chemakin, I. ; Cianciolo, V. ; Cole, B.A. ; et al.
Phys.Rev.C 77 (2008) 015209, 2008.
Inspire Record 755923 DOI 10.17182/hepdata.51393

An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\pi^+$ and $\pi^-$ production cross sections ($d^2\sigma/dpd\Omega$) are measured up to 400 mRad in $\theta_{\pi}$ and up to 6 GeV/c in $p_{\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.

16 data tables

Pion production cross section for 6.4 GeV incident protons.

Pion production cross section for 6.4 GeV incident protons.

Pion production cross section for 6.4 GeV incident protons.

More…

Low-momentum antiproton production at the CERN Proton Synchrotron

Kalmus, P.I.P. ; Eisenhandler, E. ; Gibson, W.R ; et al.
CERN-71-25, 1971.
Inspire Record 69690 DOI 10.17182/hepdata.50029

None

2 data tables

proton-beryllium TOTAL cross section ( 278 mb ) was used for normalization.

Proton-beryllium TOTAL (???) cross section ( 278 mb ) was used for normalization.


Subthreshold antiproton production in p A, d A and alpha A reactions.

Sugaya, Y. ; Ashery, D. ; Chiba, J. ; et al.
Nucl.Phys.A 634 (1998) 115-140, 1998.
Inspire Record 466882 DOI 10.17182/hepdata.36236

An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.

74 data tables

No description provided.

No description provided.

No description provided.

More…

Proton Spectra From 800-{MeV} Protons on Selected Nuclides

Chrien, R.E. ; Krieger, T.J. ; Sutter, R.J. ; et al.
Phys.Rev.C 21 (1980) 1014, 1980.
Inspire Record 143625 DOI 10.17182/hepdata.5224

The emission of protons from targets of Li6, Li, C12, Al27, Ca40, V51, Zr90, and Pb under bombardment from 800 MeV protons has been studied using a high resolution proton spectrometer. Spectra were measured at laboratory scattering angles of 5°, 7°, 9°, 11°, 13°, 15°, 20°, 25°, and 30° with special emphasis on the quasifree region. Outgoing momenta corresponding to the region of pion production were examined at 11° and 15°. Absolute cross sections have been derived by reference to known (p,p) scattering data at 800 MeV. The quasifree scattering has been compared to a distorted-wave impulse approximation analysis by summing over the unobserved (struck) nucleon. The systematics of proton production and the applicability of the distorted-wave impulse approximation analyses are discussed. NUCLEAR REACTIONS (p,p′) on Li6, Li, C12, Al27, Ca40, V51, Zr90, Pb; Ep=800 MeV, θL=5° to 30°; quasielastic scattering, DWIA analysis.

50 data tables

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.

APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.

More…

Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

Miskowiec, D. ; Ahner, W. ; Barth, R. ; et al.
Phys.Rev.Lett. 72 (1994) 3650-3653, 1994.
Inspire Record 373335 DOI 10.17182/hepdata.19695

In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.

2 data tables

No description provided.

The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.