Measurement of the form factors of the decay B0 -> D*- ell+ nu and determination of the CKM matrix element |Vcb|

The Belle collaboration Dungel, W. ; Schwanda, C. ; Adachi, I. ; et al.
Phys.Rev. D82 (2010) 112007, 2010.
Inspire Record 874639 DOI 10.17182/hepdata.79449

This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.

4 data tables

Continuum-subtracted on-resonance data as a function of the $w$ kinematic variable.

Continuum-subtracted on-resonance data as a function of the $\cos\theta_\ell$ variable.

Continuum-subtracted on-resonance data as a function of the $\cos\theta_\nu$ variable.

More…

High-statistics measurement of neutral pion-pair production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Adachi, I. ; et al.
Phys.Rev.D 78 (2008) 052004, 2008.
Inspire Record 786406 DOI 10.17182/hepdata.50151

We report a high-statistics measurement of differential cross sections for the process gamma gamma -> pi^0 pi^0 in the kinematic range 0.6 GeV <= W <= 4.0 GeV and |cos theta*| <= 0.8, where W and theta* are the energy and pion scattering angle, respectively, in the gamma gamma center-of-mass system. Differential cross sections are fitted to obtain information on S, D_0, D_2, G_0 and G_2 waves. The G waves are important above W ~= 1.6 GeV. For W <= 1.6 GeV the D_2 wave is dominated by the f_2(1270) resonance while the S wave requires at least one additional resonance besides the f_0(980), which may be the f_0(1370) or f_0(1500). The differential cross sections are fitted with a simple parameterization to determine the parameters (the mass, total width and Gamma_{gamma gamma}B(f_0 -> pi^0 pi^0)) of this scalar meson as well as the f_0(980). The helicity 0 fraction of the f_2(1270) meson, taking into account interference for the first time, is also obtained.

29 data tables

Differential cross section for W = 0.61, 0.63 and 0.65 GeV.

Differential cross section for W = 0.67, 0.69 and 0.71 GeV.

Differential cross section for W = 0.73, 0.75 and 0.77 GeV.

More…

High-statistics study of neutral-pion pair production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 79 (2009) 052009, 2009.
Inspire Record 815978 DOI 10.17182/hepdata.52161

The differential cross sections for the process $\gamma \gamma \to \pi^0 \pi^0$ have been measured in the kinematic range 0.6 GeV $< W < 4.1$ GeV, $|\cos \theta^*|<0.8$ in energy and pion scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. The differential cross sections are fitted in the energy region 1.7 GeV $< W <$ 2.5 GeV to confirm the two-photon production of two pions in the G wave. In the higher energy region, we observe production of the $\chi_{c0}$ charmonium state and obtain the product of its two-photon decay width and branching fraction to $\pi^0\pi^0$. We also compare the observed angular dependence and ratios of cross sections for neutral-pion and charged-pion pair production to QCD models. The energy and angular dependence above 3.1 GeV are compatible with those measured in the $\pi^+\pi^-$ channel, and in addition we find that the cross section ratio, $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-)$, is $0.32 \pm 0.03 \pm 0.05$ on average in the 3.1-4.1 GeV region.

31 data tables

Differential cross section for W = 0.61, 0.63 and 0.65 GeV.

Differential cross section for W = 0.67, 0.69 and 0.71 GeV.

Differential cross section for W = 0.73, 0.75 and 0.77 GeV.

More…

Precision measurement of charged pion and kaon multiplicities in electron-positron annihilation at Q = 10.52 GeV

The Belle collaboration Leitgab, M. ; Seidl, R. ; Grosse Perdekamp, M. ; et al.
Phys.Rev.Lett. 111 (2013) 062002, 2013.
Inspire Record 1216515 DOI 10.17182/hepdata.62276

Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.

1 data table

Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).


Measurement of eta eta production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 82 (2010) 114031, 2010.
Inspire Record 862260 DOI 10.17182/hepdata.56262

We report the first measurement of the differential cross section for the process gamma gamma --> eta eta in the kinematic range above the eta eta threshold, 1.096 GeV < W < 3.8 GeV over nearly the entire solid angle range, |cos theta*| <= 0.9 or <= 1.0 depending on W, where W and theta* are the energy and eta scattering angle, respectively, in the gamma gamma center-of-mass system. The results are based on a 393 fb^{-1} data sample collected with the Belle detector at the KEKB e^+ e^- collider. In the W range 1.1-2.0 GeV/c^2 we perform an analysis of resonance amplitudes for various partial waves, and at higher energy we compare the energy and the angular dependences of the cross section with predictions of theoretical models and extract contributions of the chi_{cJ} charmonia.

43 data tables

Total cross section.

Angular dependence of the differential cross section for the W range 1.096 to 1.120 GeV.

Angular dependence of the differential cross section for the W range 1.120 to 1.160 GeV.

More…

Observation of anomalous $\Upsilon(1S) \pi^+ \pi^-$ and $\Upsilon(2S) \pi^+ \pi^-$ production near the $\Upsilon(5S)$ resonance

The Belle collaboration Chen, K.F. ; Hou, W.S. ; Shapkin, M. ; et al.
Phys.Rev.Lett. 100 (2008) 112001, 2008.
Inspire Record 764099 DOI 10.17182/hepdata.50307

We report the first observation of e+e- -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi-, and first evidence for e+e- -> Upsilon(3S)pi+pi-, Upsilon(1S)K+K-, near the peak of the Upsilon(5S) resonance at sqrt{s}~10.87 GeV. The results are based on a data sample of 21.7 fb^-1 collected with the Belle detector at the KEKB e+e- collider. The observed cross-sections are sigma(Upsilon(1S)pi+pi-) = 1.61+-0.10(stat)+-0.12(sys) pb and sigma(Upsilon(2S)pi+pi-) = 2.35+-0.19(stat)+-0.32(sys) pb. Attributing these signals to the Upsilon(5S) resonance, the partial widths Gamma(Upsilon(5S)->Upsilon(1S)pi+pi-) = 0.59+-0.04(stat)+-0.09(sys) MeV and Gamma(Upsilon(5S)->Upsilon(2S)pi+pi-) = 0.85+-0.07(stat)+-0.16(sys) MeV are inferred. These are much larger than any partial widths for previously observed Upsilon(nS) -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi- decays.

4 data tables

Cross section for the final state UPSI(1S) PI+ PI-.

Cross section for the final state UPSI(2S) PI+ PI-.

Cross section for the final state UPSI(3S) PI+ PI-.

More…

Charm hadrons from fragmentation and B decays in e+ e- annihilation at s**(1/2) = 10.6-GeV.

The Belle collaboration Seuster, R. ; Abe, K. ; Aihara, H. ; et al.
Phys.Rev.D 73 (2006) 032002, 2006.
Inspire Record 686014 DOI 10.17182/hepdata.65756

We present an analysis of charm quark fragmentation at 10.6 GeV, based on a data sample of 103 fb collected by the Belle detector at the KEKB accelerator. We consider fragmentation into the main charmed hadron ground states, namely \DZ, \DP, \Ds and \LC, as well as the excited states \DSZ and \DSP. The fragmentation functions are important to measure as they describe processes at a low energy scale, where calculations in perturbation theory lead to large uncertainties. Fragmentation functions can also be used as input distributions for Monte Carlo generators. Additionally, we determine the average number of these charmed hadrons produced per B decay at the \Ys resonance and measure the distribution of their production angle in \epem annihilation events and in B decays.

0 data tables

Search for a massive invisible particle $X^0$ in $B^{+}\to e^{+}X^{0}$ and $B^{+}\to \mu^{+}X^{0}$ decays

The Belle collaboration Park, C.S. ; Kwon, Y.J. ; Adachi, I. ; et al.
Phys.Rev.D 94 (2016) 012003, 2016.
Inspire Record 1459050 DOI 10.17182/hepdata.78546

We present a search for a non-Standard-Model invisible particle $X^0$ in the mass range $0.1\textrm{-}1.8 \,{\rm GeV}/{c^2}$ in $B^{+}\to e^{+} X^{0}$ and $B^{+}\to \mu^{+} X^{0}$ decays. The results are obtained from a $711~{\rm fb}^{-1}$ data sample that corresponds to $772 \times 10^{6} B\bar{B}$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. One $B$ meson is fully reconstructed in a hadronic mode to determine the momentum of the lepton of the signal decay in the rest frame of the recoiling partner $B$ meson. We find no evidence of a signal and set upper limits on the order of $10^{-6}$.

2 data tables

Summary of upper limits at the 90$\%$ CL for $B^+ \to e^+ X^0$.

Summary of upper limits at the 90$\%$ CL for $B^+ \to \mu^+ X^0$.


Measurement of $e^+e^- \to \pi^+\pi^-J/\psi$ Cross Section via Initial State Radiation at Belle

The Belle collaboration Yuan, C.Z. ; Shen, C.P. ; Wang, P. ; et al.
Phys.Rev.Lett. 99 (2007) 182004, 2007.
Inspire Record 756012 DOI 10.17182/hepdata.50926

The cross section for e^+e^- to pi^+pi^-J/psi between 3.8 and 5.5 GeV/c^2 is measured using a 548 fb^{-1} data sample collected on or near the Upsilon(4S) resonance with the Belle detector at KEKB. A peak near 4.25 GeV/c^2, corresponding to the so called Y(4260), is observed. In addition, there is another cluster of events at around 4.05 GeV/c^2. A fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y(4260), especially for the lower mass side of the 4.25 GeV enhancement.

1 data table

Measured cross section. Statistical errors only.


Observation of $\psi(4415)\to D \bar D{}^{*}_2(2460)$ decay using initial-state radiation

The Belle collaboration Pakhlova, G. ; Adachi, I. ; Aihara, H. ; et al.
Phys.Rev.Lett. 100 (2008) 062001, 2008.
Inspire Record 759073 DOI 10.17182/hepdata.21846

We report the first observation of the $\psi(4415)$ resonance in the reaction $\e^+e^-\to D^0 D^-\pi^+$ and a measurement of its cross section in the center-of-mass energy range $4.0\mathrm{GeV}$ to $5.0\mathrm{GeV}$ with initial state radiation. From a study of resonant structure in $\psi(4415)$ decay we conclude that the $\psi(4415)\to D^0 D^-\pi^+$ decay is dominated by $\psi(4415)\to D \bar D{}^{*}_2(2460)$. We obtain $\mathcal{B}(\psi(4415)\to D^0 D^-\pi^+_{\mathrm {non-resonant}})/\mathcal{B}(\psi(4415)\to D \bar D{}^{*}_2(2460)\to D^0 D^-\pi^+)<0.22$ at 90% C.L. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673 $\mathrm{fb}^{-1}$.

1 data table

The measured cross section for E+ E- --> D0 D- PI+.