A Measurement of $\bar{p} p$ and $p p$ Elastic Scattering at {ISR} Energies

The AMES-BOLOGNA-CERN-DORTMUND-HEIDELBERG-WARSAW collaboration Breakstone, A. ; Campanini, R. ; Crawley, H.B. ; et al.
Nucl.Phys.B 248 (1984) 253-260, 1984.
Inspire Record 204422 DOI 10.17182/hepdata.33837

We have measured the differential cross section for pp and p̄p elastic scattering at √ s = 31, 53 and 62 GeV in the interval 0.05 < | t | < 0.85 GeV 2 at the CERN ISR using the Split Field Magnet detector. At 53 and 62 GeV, for 0.17 < | t | < 0.85 GeV 2 both pp and p̄p data show simple exponential behaviour in t ; at √ s = 31 GeV the data for 0.05 < | t | < 0.85 GeV 2 are consistent with a change in slope near | t | = 0.15 GeV 2 .

5 data tables

ERRORS CONTAIN BOTH STATISTICAL AND T-DEPENDENT SYSYEMATIC ERRORS.

No description provided.

LOCAL SLOPE PARAMETERS BASED ON QUADRATIC EXPONENTIAL FIT.

More…

CHARGED PARTICLE AND PI0 MULTIPLICITY DISTRIBUTIONS AND THE ANNIHILATION PROPERTIES OF ANTI-P P INTERACTIONS AT 70-GeV/c

Dumont, J.J. ; Lemonne, J. ; Vanhomwegen, G. ; et al.
Z.Phys.C 13 (1982) 1-9, 1982.
Inspire Record 179759 DOI 10.17182/hepdata.16433

The elastic and inelastic\(\bar p\)p cross sections at 70 GeV/c have been determined in an experiment performed at CERN using BEBC equipped with a TST. The topological cross sections were measured and the moments of the inelastic multiplicity distribution are 〈nc〉=6.16±0.09, 〈nc〉/D=2.04±0.05 andf2cc=2.97±0.03. The average number of Dalitz pairs per inelastic event is (3.12±0.09)×10−2. Assuming that these all arise from π0 decay the average π0 multiplicity is\(\langle n_{\pi ^0 } \rangle= 2.71 \pm 0.14\). The\(\bar p\)p−pp cross section differences lead to an annihilation cross section σA = 4.42±0.41 mb and the moments of the annihilation multiplicty distribution are 〈nA〉=8.0±0.3, 〈nA〉/D=2.5±0.2 andf2A−−=−1.4±0.3. An independent check of σA was made by investigating fast forward charged and neutral secondary interactions in the TST and in the surrounding neon-hydrogen mixture, and gives a value σA = 5.0±1.6 mb. The ratio of fast\(\bar n\) to\(\bar p\) production in non-annihilation interactions at 70 GeV/c is found to be 0.45±0.11.

9 data tables

No description provided.

INELASTIC TOPOLOGICAL CROSS SECTIONS. NORMALIZED TO TOTAL INELASTIC CROSS SECTION OF 35.7 +- 0.5 MB (AYRES ET AL., PR D15, 3105).

No description provided.

More…

$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

31 data tables

No description provided.

No description provided.

No description provided.

More…