The Reactions $K^- p \to \pi^\mp \Sigma^\pm$ (1385) at 8.25-{GeV}/$c$

The Birmingham-CERN-Glasgow-Michigan State-Paris collaboration Baubillier, M. ; Bloodworth, I.J. ; Burns, A. ; et al.
Z.Phys.C 23 (1984) 213, 1984.
Inspire Record 199642 DOI 10.17182/hepdata.16327

The reactionsK−p→π∓Σ(1385)± are studied at an incident laboratory momentum of 8.25 GeV/c using data from a high statistics (≃180 events/μb) bubble chamber experiment. In the case of the reactionK−p→π−Σ(1385)+ an amplitude analysis is performed and the complete Σ(1385)+ spin density matrix is extracted as a function oft′. The results are compared with the predictions of the additive quark model. In the case of the reactionK−p→π+Σ(1385)− the cross-sections for forward and backward production are determined.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Production of Sigma (1660) in K- p Interactions at 4.2-GeV/c

The Amsterdam-CERN-Nijmegen-Oxford collaboration Timmermans, Jan ; Engelen, J.J. ; Heinen, P.M. ; et al.
Nucl.Phys.B 112 (1976) 77-106, 1976.
Inspire Record 108671 DOI 10.17182/hepdata.35709

The reaction of K − p → Σ + (1660) π − was studied in a 65 event/μb sample of Σππ(π), Λππ(π) and p K 0 π − final states. The main production features observed are that the Σ (1660) decaying into Σππ is mostly Λ (1405) π and is produced only at small t ; the Σ (1660) decaying into Σπ shows both forward and backward production. This confirms earlier results suggesting the existence of two Σ (1660) resonances. An Adair analysis and a (model-dependent) moments analysis find a J = 3 2 preference for the Σ + (1660)→ Λ (1405) π + → Σ + π − π + ; a Dalitz-Miller analysis of the decay Σ + (1660) → Λ (1405) π + → Σ − π + π + determines J P to be 3 2 − . For the Σ + (1660) → Σ 0 π + a moments analysis suggests J = 3 2 . Branching ratios are determined, which (with the exceptation of the Λ (1405) π mode) are in reasonable agreement with results from formation experiments for the J P = 3 2 − Σ(1660) resonance. We compare our branching ratios with SU(3) and SU(6) predictions; the latter comparison suggests that, unless there is strong configuration mixing, Σ (1660) → Λ (1405) π , if 3 2 − , cannot be a member of the (70, 1 − ) multiplet.

4 data tables

No description provided.

PRODUCTION ANGULAR DISTRIBUTIONS OF SIG(1670D13)+ DIFFER FOR THE TWO FINAL STATES <LAM(1405S01) PI+> AND <SIGMA PION> SUGGESTING THE EXISTENCE OF TWO SIG(1660) RESONANCES.

VALUES IN STRONG DISAGREEMENT WITH THE STODOLSKY-SAKURAI MODEL PREDICTIONS.

More…