Elastic Photoproduction of $\rho~{0}$ Mesons at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 463 (1996) 3-32, 1996.
Inspire Record 415281 DOI 10.17182/hepdata.44784

The cross section for the elastic photoproduction of \r0\ mesons ($\gamma p \rightarrow \rho~0 p$) has been measured with the H1 detector at HERA for two average photon-proton centre-of-mass energies of 55 and 187GeV. TheFcenterline lower energy point was measured by observing directly the $\rho~{0}$ decay giving a cross section of $9.1\pm 0.9\,(\stat)\pm 2.5\,(\syst)\;\mu$b. The logarithmic slope parameter of the differential cross section, ${\rm d}\sigma/{\rm d}t$, is found to be $10.9 \pm 2.4\,(\stat) \pm 1.1\,(\syst)\;$GeV$~{-2}$. The \r0\ decay polar angular distribution is found to be consistent with s-channel helicity conservation. The higher energy cross section was determined from analysis of the lower part of the hadronic invariant mass spectrum of diffractive photoproduction and found to be $13.6\pm 0.8\,(\stat)\pm 2.4\,(\syst)\;\mu$b.

6 data tables

PI+ PI- cross section.

RHO0 cross section by selecting Mpipi to lie between 2Mpi and Mrho + 5width0.

No description provided.

More…

Exclusive $\rho^0$ and $\phi$ Production in Deep Inelastic Muon Scattering

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, G. ; et al.
Z.Phys.C 39 (1988) 169, 1988.
Inspire Record 252743 DOI 10.17182/hepdata.15619

Data are presented on exclusive ρ0 and ϕ production in deep inelastic muon scattering from a target consisting mainly of nitrogen. The ratio of the total cross sections for ρ0 and ϕ production is found to be 9∶(1.6±0.4) at 〈Q2〉=7.5 GeV2, consistent with theSU(3) prediction of 9∶2. Thet dependence for exclusive ρ0 production is found to become shallover asQ2 increases and, for largeQ2, thet dependence is typical of that for a hard scattering process. Furthermore, the ratio of the cross sections for coherent: incoherent production from nitrogen is found to decrease rapidly withQ2. Such behaviour indicates that even for exclusive vector meson production the virtual photon behaves predominantly as an electromagnetic probe.

6 data tables

No description provided.

No description provided.

No description provided.

More…

EXCLUSIVE rho0 PRODUCTION IN DEEP INELASTIC MUON PROTON SCATTERING

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 161 (1985) 203, 1985.
Inspire Record 214930 DOI 10.17182/hepdata.30353

Exclusive ϱ 0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q 2 (1 GeV 2 < Q 2 < 25 GeV 2 ) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/ Q 4 . A shallow t distribution, typical of a hard scattering process is observed and the ϱ 0 is found to be dominantly in the helicity zero spin state. The ϱ 0 s are mainly produced by transverse photons and s -channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q 2 even exclusive ϱ 0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared.

8 data tables

No description provided.

No description provided.

SYSTEMATIC ERROR ON SLOPE IN 0.8.

More…

Photoproduction of $\pi^+ \pi^- \pi^0$ on Hydrogen With Linearly Polarized Photons of Energy 20-{GeV} - 70-{GeV}

The Omega Photon & Bonn-CERN-Glasgow-Lancaster-Manchester-Paris-Rutherford-Sheffield collaborations Atkinson, M. ; Axon, T.J. ; Barberis, D. ; et al.
Nucl.Phys.B 231 (1984) 15-39, 1984.
Inspire Record 191169 DOI 10.17182/hepdata.33892

Results on photoproduction of π + π − π 0 in the photon energy range 20–70 GeV are presented. For the ω meson, the production cross-section is found to be 1010±15 (statistical)±290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The φ meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π − π 0 ) of 610±35±170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a broad π + π − π 0 continuum, mainly via ϱπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 ωb. The spin-parity content is analysed by the moments of the π + π − π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π − π 0 Dalitz plot. It is found that production of J P = 1 − states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson.

6 data tables

No description provided.

EXPONENTIAL FITS TO D(SIG)/DT IN OMEGA MASS REGION.

EXPONENTIAL FITS TO D(SIG)/DT OVER FULL ENERGY FOR THREE MASS REGIONS CORRESPONDING TO OMEGA, PHI AND OMEGA*.

More…

Exclusive Vector Meson Production in Muon - Proton Scattering

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 19 (1979) 1303, 1979.
Inspire Record 130570 DOI 10.17182/hepdata.24312

From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.

4 data tables

THE ABSOLUTE TOTAL CROSS SECTION IS FROM A FIT TO THE MIT-SLAC ELECTRON SCATTERING DATA BY W. ATWOOD AND S. STEIN.

No description provided.

FOR 0.6 < M(PI+ PI-) < 0.9 GEV, USING THE METHOD OF MOMENTS.

More…