Measurement of the forward - backward asymmetry in e+ e- ---> b anti-b and the b quark branching ratio to muons at TRISTAN using neural networks

The AMY collaboration Ueno, K. ; Kanda, S. ; Olsen, S.L. ; et al.
Phys.Lett.B 381 (1996) 365-371, 1996.
Inspire Record 418709 DOI 10.17182/hepdata.38513

The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).

1 data table

Production of chi charmonium via 300-GeV/c pion and proton interactions on a lithium target

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 49 (1994) 543-546, 1994.
Inspire Record 354743 DOI 10.17182/hepdata.42541

We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.

3 data tables

The cross section per nucleon.

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.


Determination of the relative branching ratios for p anti-p ---> pi+ pi- and p anti-p ---> K+ K-

The CPLEAR collaboration Adler, R. ; Angelopoulos, A. ; Apostolakis, A. ; et al.
Phys.Lett.B 267 (1991) 154-158, 1991.
Inspire Record 317491 DOI 10.17182/hepdata.48425

The ratio of the branching fractions for p p →K + K − and p p →π + π − was determined with the CPLEAR detector, by stopping antiprotons in a gaseous hydrogen target at 15 bar pressure. It was found to be BR(K + K − )/BR( π + π − )=0.205± 0.016. The fraction of P-wave annihilation at rest at this target density was deduced to be (38±9)%.

1 data table

CONST is the fraction of P-wave annihilation in gaseous hydrogen at pressu re of 15 bar. In the SIG/SIG the statistical and systematic errors are added qu adratically.


Total and differential cross-sections of p + p ---> pi+ + d reactions down to 275-keV above threshold

The GEM collaboration Drochner, M. ; Ernst, J. ; Fortsch, S ; et al.
Phys.Rev.Lett. 77 (1996) 454-457, 1996.
Inspire Record 431032 DOI 10.17182/hepdata.19580

The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.

1 data table

The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.


Search for anomalous production of single photons at s**(1/2) = 130-GeV and 136-GeV

The DELPHI collaboration Adam, W. ; Abreu, P. ; Adye, T. ; et al.
Phys.Lett.B 380 (1996) 471-479, 1996.
Inspire Record 418937 DOI 10.17182/hepdata.47517

This letter reports the results of the measurement of single photon production in the reaction e + e − → γ + invisible particles at centre-of-mass energies s =130 and 136 GeV and an integrated luminosity of 5.83 pb −1 , collected with the DELPHI detector at LEP. The signal is compatible with the prediction of the Standard Model for the process e + e − → ν ν γ , and the number of neutrino families has been determined to be N ν = 3.1 ± 0.6. Limits have been derived on anomalous neutral gauge boson couplings and on compositeness in the framework of a specific model.

1 data table

SIG with C=HPC and C=FEMC correpond to the events in the barrel and forwardregion, respectively.


A Study of particle ratios and strangeness suppression in p anti-p collisions at s**(1/2) = 630-GeV with UA1

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 447-450, 1996.
Inspire Record 403647 DOI 10.17182/hepdata.48043

From a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment and from other published data at the CERN S p p S collider we have estimated the relative production of π ± , π 0 , K ± , K S 0 , Λ, Λ , p and p . We obtain a meson over baryon ratio M B = 6.4 ± 1.1 . From the K S 0 π ± ratio we measure the strangeness suppression factor λ = 0.29 ± 0.02 ± 0.01 which, combining with other available data provides a new world average of 0.29 ± 0.015. Both the K S 0 π ± ratio and the strangeness suppression factor λ as a function of s are investigated, and an extrapolation to the LHC energy is performed.

2 data tables

Extrapolation to pt=0.

CONST is strangeness suppression factor, extracted from KS/PI+- ratio (see text).


Charged Particle Spectra in $\alpha \alpha$ and $\alpha p$ Collisions at the {CERN} {ISR}

The CERN-Heidelberg-Lund collaboration Bell, W. ; Braune, K. ; Glaesson, G. ; et al.
Z.Phys.C 27 (1985) 191, 1985.
Inspire Record 205679 DOI 10.17182/hepdata.16095

Momenta of charged particles produced in inelastic αα, αp, andpp collisions were measured using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. Inclusive and semi-in-clusive spectra are presented as a function of rapidityy, Feynman-x, and transverse momentumpT. The inclusivey distributions agree well with predictions of the dual parton model; the highest particle densities are reached aty≃0 and the momenta of leading protons decrease significantly for increasing total multiplicity. ‘Temperatures’ are equal in αα, αp, andpp interactions. ThepT distributions depend weakly on the multiplicity.

6 data tables

No description provided.

No description provided.

No description provided.

More…