Inclusive Production of Lambdas and Anti-lambdas in $\gamma p$ Interactions for Photon Energies Between 25-{GeV} and 70-{GeV}

The Bonn-CERN-Ecole Poly-Glasgow-Lancaster-Manchester-Orsay-Paris-Rutherford-Sheffield collaboration Aston, D. ; Atkinson, M. ; Bailey, R. ; et al.
Nucl.Phys.B 195 (1982) 189-202, 1982.
Inspire Record 167734 DOI 10.17182/hepdata.34176

Results are presented on the inclusive photoproduction of λ and λ for incident photon energies between 25 and 70 GeV. The slope parameter of the p T 2 distribution is found to be 2.83±0.1 GeV −2 for λ and 3.28±0.25 GeV −2 for λ . The x F distributions, measured in the range −0.2 to 0.7, show that while λ are produced centrally, λ production extends to more negative values of x F ; the shapes show no energy dependence and are similar to those in pion-induced reactions. The polarization of the produced λ is less than 10%. The results are discussed in terms of vector dominance and quark fusion models.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Search for $\omega \phi$ and $\phi \phi$ Production in the Reactions $\gamma \gamma \to K^+ K^- \pi^+ \pi^- \pi^0$ and $\gamma \gamma \to 2 K^+ 2 K^-$

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Phys.Lett.B 210 (1988) 273-277, 1988.
Inspire Record 260828 DOI 10.17182/hepdata.29918

The reaction γγ→K + K − π + π − π 0 has been observed for the first time, using the ARGUS detector at the e + e − storage ring DORIS II at DESY. The cross section shows an enhancement for W γγ close to 3 GeV/ c 2 . Searches for γγ→ωφ and for γγ→φφ leading to this final state, as well as for γγ→φφ→2K + 2K − , have been performed. The derived upper limits for ωφ and φφ production are compatible with q q q q model predictions.

2 data tables

TOPOLOGICAL CROSS SECTION.

95 PCT CL UPPER LIMITS.


Proton compton effect in the region of the delta(1236)-resonance

Genzel, H. ; Jung, M. ; Rausch, K.R. ; et al.
Lett.Nuovo Cim. 4S2 (1972) 695-698, 1972.
Inspire Record 77720 DOI 10.17182/hepdata.37338

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

The photoproduction of eta-mesons between 950 mev and 2.2 gev

Booth, P.S.L. ; Butler, M.F. ; Carroll, L.J. ; et al.
Lett.Nuovo Cim. 2S1 (1969) 66-70, 1969.
Inspire Record 58277 DOI 10.17182/hepdata.37407

None

1 data table

No description provided.


Small-angle photoproduction of single positive pions on hydrogen at energies around the « second resonance »

Beneventano, M. ; Finzi, R. ; Mezzetti, L. ; et al.
Nuovo Cim. 28 (1963) 1464-1483, 1963.
Inspire Record 1185011 DOI 10.17182/hepdata.37694

Cross-sections of single positive pions produced in hydrogen by photons of laboratory energies between 550 and 900 MeV at centre of-mass angle between 0° and 10° have been measured, using a magnetic spectrometer and an appropriate counter arrangement. The experiment is described in detail. Angular distributions at constant y-ray energy and the dependence of the differential cross-section on energy at variousconstant centre-of-mass angles are given and their significance discussed.

3 data tables

No description provided.

No description provided.

No description provided.


The polarization of the proton from the process γ+p→p+$\pi^{0}$ in the region of the higher resonances

Querzoli, R. ; Salvini, G. ; Silverman, A. ;
Nuovo Cim. 19 (1961) 53-76, 1961.
Inspire Record 1185001 DOI 10.17182/hepdata.37767

The polarization of the recoil proton in the photoproduction process γ+p→p+π0 has been measured with the beam of the Frascati electrosynchrotron at an angle of 90° in the c.m. system, in the energy interval (500÷900) MeV. A counter technique has been used, and the polarization of the proton was revealed by the left to right asymmetry in the elastic scattering of the protons in a carbon target. The experimental results are given in Table III and in Fig. 10. A definite polarization is found, always of the same sign and equal to −0.4±.14, −0.63±.23, −0.6±.25, −0.57±.12, −0.38±.09, −0.5±.17, −0.5±.22 at the γ-ray energies of 560, 610, 650, 700, 750, 800, 850 MeV respectively. The discussion of these experimental results, together with the data of angular dstributions, allows to conclude that they are in agreement with the hypothesis that the second resonance is a transition (E 1,d 3/2) and the third one is a transition (E 2,f 3/2).

1 data table

No description provided.


Differential cross-section measurements for pi0 photoproduction in the region of the third nucleon resonance

Booth, P.S.L. ; Butler, M.F. ; Carroll, L.J. ; et al.
Nuovo Cim.A 13 (1973) 235-247, 1973.
Inspire Record 86978 DOI 10.17182/hepdata.37826

Differential cross-sections have been measured for π0 photoproduction over the energy range 0.8 GeV to 1.4 GeV and at angles between 50° and 90° c.m.

1 data table

No description provided.


A MEASUREMENT OF THE DIFFERENCE BETWEEN THE SINGLE NUCLEON CROSS-SECTIONS FOR j / psi MUOPRODUCTION IN IRON AND IN H-2, D-2 TARGETS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 152 (1985) 433-438, 1985.
Inspire Record 207459 DOI 10.17182/hepdata.30432

The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .

3 data tables

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.