Diffractive Dijet Production with a Leading Proton in $ep$ Collisions at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 05 (2015) 056, 2015.
Inspire Record 1343110 DOI 10.17182/hepdata.73234

The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

23 data tables

Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).

More…

Evidence for exclusive gamma-gamma to W+ W- production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 119, 2016.
Inspire Record 1448100 DOI 10.17182/hepdata.74707

A search for exclusive or quasi-exclusive gamma gamma to W+W- production, via pp to p(*) W+W- p(*) to p(*) mu+/- e-/+ at sqrt(s) = 8 TeV, is reported using data corresponding to an integrated luminosity of 19.7 inverse femtobarns. Events are selected by requiring the presence of an electron-muon pair with large transverse momentum pt(mu+/- e-/+) > 30 GeV, and no associated charged particles detected from the same vertex. The 8 TeV results are combined with the previous 7 TeV results (obtained for 5.05 inverse femtobarns of data). In the signal region, 13 (2) events are observed over an expected background of 3.9 +/- 0.6 (0.84 +/-0.15) events for 8 (7) TeV, resulting in a combined excess of 3.4 standard deviations over the background-only hypothesis. The observed yields and kinematic distributions are compatible with the standard model prediction for exclusive and quasi-exclusive gamma gamma to W+W- production. Upper limits on the anomalous quartic gauge coupling operators a[W;0,C] (dimension-6) and f[M0,1,2,3] (dimension-8), the most stringent to date, are derived from the measured dilepton transverse momentum spectrum.

1 data table

8 TeV cross section multiplied by branching fraction to opposite-sign mue final states, corrected for all experimental efficiencies and extrapolated to the full phase space.


Measurement of the t-tbar production cross section in the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 029, 2016.
Inspire Record 1426692 DOI 10.17182/hepdata.74208

The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.

3 data tables

Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.

Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.

Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.


Forward-backward asymmetry of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 325, 2016.
Inspire Record 1415949 DOI 10.17182/hepdata.73121

A measurement of the forward-backward asymmetry A[FB] of oppositely charged lepton pairs (mu mu and e e) produced via Z/gamma* boson exchange in pp collisions at sqrt(s) = 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns collected with the CMS detector at the LHC. The measurement of A[FB] is performed for dilepton masses between 40 GeV and 2 TeV and for dilepton rapidity up to 5. The A[FB] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.

40 data tables

Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).

Unfolded measurement of AFB for the forward rapidity region (e+e-).

Unfolded measurements of AFB in each M-|y| bin (mu+mu-).

More…

Search for a Higgs boson decaying into gamma* gamma to ll gamma with low dilepton mass in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 341-362, 2016.
Inspire Record 1382587 DOI 10.17182/hepdata.73712

A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.

4 data tables

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

More…

Precision measurement of the W boson decay branching fractions in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 072008, 2022.
Inspire Record 2014153 DOI 10.17182/hepdata.116035

The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are (10.83 $\pm$ 0.10)%, (10.94 $\pm$ 0.08)%, and (10.77 $\pm$ 0.21)%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be (10.89 $\pm$ 0.08)% and (67.32 $\pm$ 0.23)%, respectively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo-Kobayashi-Maskawa (CKM) matrix $\sum_{ij}\vert V_{ij}\vert^{2}$ = 1.984 $\pm$ 0.021, the CKM element $\vert V_\mathrm{cs}\vert$ = 0.967 $\pm$ 0.011, and the strong coupling constant at the W boson mass scale, $\alpha_\mathrm{S}(m^2_\mathrm{W})$ = 0.095 $\pm$ 0.033.

5 data tables

Summary of the impacts of each source of uncertainty (quoted as a percent of the total systematic uncertainty) for each W branching fraction. Whenever multiple NPs impact a common source of systematic uncertainty, each component is varied independently and the range of impacts is given.

Values of the W boson decay branching fractions based on CMS measurement.

Ratios of W boson leptonic branching fractions.

More…

Measurement of the $\eta_c (1S)$ production cross-section in proton-proton collisions via the decay $\eta_c (1S) \rightarrow p \bar{p}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Eur.Phys.J.C 75 (2015) 311, 2015.
Inspire Record 1316329 DOI 10.17182/hepdata.75251

The production of the $\eta_c (1S)$ state in proton-proton collisions is probed via its decay to the $p \bar{p}$ final state with the LHCb detector, in the rapidity range $2.0 < y < 4.5$ and in the meson transverse-momentum range $p_T > 6.5$ GeV/c. The cross-section for prompt production of $\eta_c (1S)$ mesons relative to the prompt $J/\psi$ cross-section is measured, for the first time, to be $\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV using data corresponding to an integrated luminosity of 0.7 fb$^{-1}$, and $\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B}$ at $\sqrt{s} = 8$ TeV using 2.0 fb$^{-1}$. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the $\eta_c (1S)$ and $J/\psi$ decays to the $p \bar{p}$ final state. In addition, the inclusive branching fraction of $b$-hadron decays into $\eta_c (1S)$ mesons is measured, for the first time, to be $B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}$, where the third uncertainty includes also the uncertainty on the $J/\psi$ inclusive branching fraction from $b$-hadron decays. The difference between the $J/\psi$ and $\eta_c (1S)$ meson masses is determined to be $114.7 \pm 1.5 \pm 0.1$ MeV/c$^2$.

4 data tables

Differential cross-section for $\eta_c(1S)$ prompt production for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.

Differential cross-section for $\eta_c(1S)$ prompt production for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.

Differential cross-section for $\eta_c(1S)$ from inclusive charmonium production in b-hadrons decays for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.

More…

Measurement of forward $\rm Z\rightarrow e^+e^-$ production at $\sqrt{s}=8$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 05 (2015) 109, 2015.
Inspire Record 1347133 DOI 10.17182/hepdata.73305

A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8TeV centre-of-mass energy is presented. The measurement is based on a sample of $\rm Z\rightarrow e^+e^-$ decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0fb$^{-1}$. The acceptance is defined by the requirements $2.0<\eta<4.5$ and $p_{\rm T}>20$GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60--120GeV. The cross-section is determined to be $$ \sigma({\rm pp\to Z\to e^+e^-})=93.81\pm0.41({\rm stat})\pm1.48({\rm syst})\pm1.14({\rm lumi})\;{\rm pb}\,,$$ where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable $\phi^*$, which is related to the Z-boson transverse momentum.

3 data tables

Integrated cross-section for Z$\to$ e$^+$e$^-$ within the LHCb acceptance.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of Z-boson rapidity. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of $\phi^*$. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.


Study of $D^{+} \to K^{-} \pi^+ e^+ \nu_e$

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N ; Ai, Xiaocong ; et al.
Phys.Rev.D 94 (2016) 032001, 2016.
Inspire Record 1411645 DOI 10.17182/hepdata.77048

We present an analysis of the decay $D^{+} \to K^{-} \pi^+ e^+ \nu_e$ based on data collected by the BESIII experiment at the $\psi(3770)$ resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%$. For $0.8<m_{K\pi}<1.0$ GeV/$c^{2}$ the partial branching fraction is $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$. A partial wave analysis shows that the dominant $\bar K^{*}(892)^{0}$ component is accompanied by an \emph{S}-wave contribution accounting for $(6.05\pm0.22\pm0.18)\%$ of the total rate and that other components are negligible. The parameters of the $\bar K^{*}(892)^{0}$ resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the $\bar K^{*}(892)^{0}$ helicity basis form factors in a model-independent way.

2 data tables

The $S$-wave phase $\delta_{S}$ measured in the 12 $m_{K\pi}$ bins with statistical and systematic uncertainties. The systematic uncertainties include: (I) background fraction, (II) background shape, (III) the $\bar K_{0}^{*}(1430)^{0}$ mass and width, (IV) additional resonances, (V) tracking efficiency correction, (VI) PID efficiency correction.

Average form-factor products in the $K^{*}$-dominated region.


Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

6 data tables

$P_{T}$ Recoil distribution of events simulated with PYTHIA 6.4 and reconstructed before and after the boson's PT correction has been applied.

Estimated background contributions for the $W^+ -> ev$ data yields.

Estimated background contributions for the $W^- -> ev$ data yields.

More…