Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium

Vetter, P.A. ; Meekhof, D.M. ; Majumder, P.K. ; et al.
Phys.Rev.Lett. 74 (1995) 2658-2661, 1995.
Inspire Record 405007 DOI 10.17182/hepdata.19649

We report a new measurement of parity nonconserving (PNC) optical rotation near the 1.28 μm, 6P1/2→6P3/2 magnetic dipole transition in thallium. We find the ratio of the PNC E1 amplitude to the M1 amplitude to be R=(−14.68±0.17)×10−8, which within the present uncertainty of atomic theory yields the thallium weak charge Qw(T205l)=−114.2±3.8 and the electroweak parameter S=−2.2±3.0. Separate measurements on the F=1 and F=0 ground-state hyperfine components of the transition yield R1−R0=(0.15±0.20)×10−8, which limits the size of nuclear spin-dependent PNC in Tl.

1 data table

Spin of the Tl nucleus is 1/2.