First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

The T2K collaboration Abe, K. ; Andreopoulos, C. ; Antonova, M. ; et al.
Phys.Rev.D 95 (2017) 012010, 2017.
Inspire Record 1465650 DOI 10.17182/hepdata.73182

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.

8 data tables

Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

More…

Improved determination of alpha(s) from neutrino nucleon scattering.

Seligman, W.G. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 79 (1997) 1213-1216, 1997.
Inspire Record 448914 DOI 10.17182/hepdata.37289

We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.

6 data tables

No description provided.

No description provided.

No description provided.

More…

A Precise Measurement of the Muon Neutrino-NucleonInclusive Charged Current Cross-Section off an IsoscalarTarget in the Energy Range\boldmath{$2.5 < E_\nu < 40$}~GeV by NOMAD

The NOMAD collaboration Wu, Q. ; Mishra, Sanjib Ratan ; Godley, A. ; et al.
Phys.Lett.B 660 (2008) 19-25, 2008.
Inspire Record 767013 DOI 10.17182/hepdata.50629

We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range $2.5 \leq E_\nu \leq 40$ GeV. The significance of this measurement is its precision, $\pm 4$% in $2.5 \leq E_\nu \leq 10$ GeV, and $\pm 2.6$% in $10 \leq E_\nu \leq 40$ GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

1 data table

Inclusive muon-neutrino charged current cross section.


A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 621 (2002) 3-34, 2002.
Inspire Record 566751 DOI 10.17182/hepdata.48925

A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.

20 data tables

Measured yields of the neutral strange particles measured in this analysis.The second line (marked *) is a recalculation taking into account contributions from both primary and secondary V0. The values for K0 are the K0S rates multipl ied by 2.

Measured yields as a function of E, the neutrino energy.

Measured yields as a function of W**2.

More…

Study of D*+ production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Phys.Lett.B 526 (2002) 278-286, 2002.
Inspire Record 567771 DOI 10.17182/hepdata.49701

A search was made among ν μ charged current events collected in the NOMAD experiment for the reaction: ν μ +N→μ − +D ★+ + hadrons ↪ D 0 +π + ↪ K − +π + . A high purity D ★+ sample composed of 35 events was extracted. The D ★+ yield in ν μ charged current interactions was measured to be T =(0.79±0.17(stat.)±0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D ★+ is 0.67±0.02(stat.)±0.02(syst.). The distributions of the fragmentation variables z, P T 2 and x F for D ★+ are also presented.

5 data tables

Distribution in Feynman X.

Distribution in transverse momentum.

Distribution in fractional energy Z.

More…

A first measurement of low x low Q**2 structure functions in neutrino scattering.

The CCFR & NuTeV collaborations Fleming, Bonnie T. ; Adams, T. ; Alton, A. ; et al.
Phys.Rev.Lett. 86 (2001) 5430-5433, 2001.
Inspire Record 537572 DOI 10.17182/hepdata.19408

A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.

1 data table

F2 measurements.


Centrality dependence of kaon yields in Si + A and Au + Au collisions at the AGS.

The E-802 & E-866 collaborations Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Rev.C 60 (1999) 044904, 1999.
Inspire Record 496863 DOI 10.17182/hepdata.31369

Charged kaon production has been measured in Si+Al and Si+Au collisions at 14.6 A GeV/c, and Au+Au collisions at 11.1 A GeV/c by Experiments 859 and 866 (the E--802 Collaboration) at the BNL AGS. Invariant transverse mass spectra and rapidity distributions for both K+ and K- are presented. The centrality dependence of rapidity-integrated kaon yields is studied. Strangeness enhancement is observed as an increase in the slope of the kaon yield with the total number of participants as well as the yield per participant. The enhancement starts with peripheral Si+Al and Si+Au collisions (relative to N+N) and appears to saturate for a moderate number of participating nucleons in Si+Au collisions. It is also observed to increase slowly with centrality in Au+Au collisions, to a level in the most central Au+Au collisions that is greater than that found in central Si+A collisions. The enhancement factor for $K^+$ production are 3.0 +-0.2(stat.) +-0.4(syst.) and 4.0 +-0.3(stat.) +-0.5(syst.), respectively, for the most central 7% Si+Au collisions and the most central 4% Au+Au collisions relative to N+N at the correponding beam energy.

6 data tables

In order to study the centrality dependence of kaon production, the data were devided into BIN`s in centrality. The selection for AU+AU data was made by using of the Zero-degree CALorimeter (ZCAL). The zero-degree energy resolution was measured to be 1.48*sqrt(E).

In order to study the centrality dependence of kaon production, the data were devided into BIN`s in centrality. The selection for AU+AU data was made by using of the Zero-degree CALorimeter (ZCAL). The zero-degree energy resolution was measured to be 1.48*sqrt(E).

For SI+AU data the centrality selection (calibrated target multiplicity) was made by using of E-859 Target Multiplicity Array (TMA).

More…

A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

3 data tables

No description provided.

Total GLS integral and ALPHAS for each bin in Q2. Systematic errors are correlated in different Q2 bins. The second DSYS error in ALPHAS is due to the uncertainty in the theory.

ALPHAS extrapolated to the Z0 mass. The second DSYS error is due to the uncertainty in the theory.


A high statistics search for nu/mu (anti-nu/mu) --> nu/e (anti-nu/e) oscillations in the small mixing angle regime.

The CCFR/NuTeV collaboration Romosan, A. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 78 (1997) 2912-2915, 1997.
Inspire Record 426120 DOI 10.17182/hepdata.41667

Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.

2 data tables

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

No description provided.


A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

1 data table

The CONST(N=LAMBDA-QCD) is extracted from the measurement of scaling violations of the nonsinglet structure function.