Parity-Nonconserving Optical Rotation at 876 nm in Bismuth

Macpherson, M.J. ; Stacey, D.N. ; Baird, P.E.G. ; et al.
EPL 4 (1987) 811-816, 1987.
Inspire Record 1408819 DOI 10.17182/hepdata.70515

We have measured parity-nonconserving optical rotation in the vicinity of the M1 absorption transition at 876 nm in bismuth. The result, R = Im(E1PNC/M1) = (-10.0 ± 1.0) centerdot 10-8, is in agreement with calculations based on the standard model of the electroweak interaction. The predicted form of the PNC rotation spectrum has been verified to high accuracy.

1 data table

No description provided.


Measurement of parity non-conserving optical rotation in the 648 nm transition in atomic bismuth

Taylor, J.D. ; Baird, P.E.G. ; Hunt, R.G. ; et al.
J.Phys.B 20 (1987) 5423-5442, 1987.
Inspire Record 1393361 DOI 10.17182/hepdata.38568

Parity non-conserving (PNC) optical rotation has been measured by laser polarimetry in the 648 nm magnetic dipole transition (6p$^{3}J$=$\frac{3}{2}\rightarrow$6p$^{3}J'=\frac{5}{2}$) in atomic bismuth. The experiment involves finding the small differences in rotation between selected frequency points in the vicinity of the F = 6 $\rightarrow$ F' = 7 hyperfine component. Faraday rotation, which can be distinguished from PNC rotation by its wavelength dependence, is used in locking the laser frequency and calibrating the PNC' effect. Results obtained over a six-year period are summarised; a detailed discussion of error sources and associated tests is given. The final result for the PNC parameter of the 648 nm transition is R = (-9.3 $\pm$ 1.4)X10$^{-8}$. This is in agreement with the measurements of Birich et a/ but not with those of Barkov and Zolotorev. It is also consistent with the standard model of the electroweak interaction, but the uncertainty in the atomic theory is now the limiting factor in the comparison.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


ATOMIC PARITY VIOLATION MEASUREMENTS IN THE HIGHLY FORBIDDEN (6)S(1/2) - (7)S(1/2) CESIUM TRANSITION. 3. DATA ACQUISITION AND PROCESSING. RESULTS AND IMPLICATIONS

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
J.Phys.(France) 47 (1986) 1709-1730, 1986.
Inspire Record 232798 DOI 10.17182/hepdata.38588

This paper completes the detailed presentation of our PV experiment on the 6S1/2 - 7S1/2 transition in Cs. A detailed description of the data acquisition and processing is given. The results of two independent measurements made on ΔF = 0 and ΔF =1 hfs components agree, providing an important cross-check. After a complete reanalysis of systematics and calibration, the precision is slightly improved, leading to the weighted average Im Epv 1/β = - 1.52 ± 0.18 mV/cm. Later results from an independent group agree quite well. With the semi-empirical value β = (26.8 ± 0.8) a30, our result yields Epv1 = (- 0.79 ± 0.10) x 10-11 i |e|a0. Coupled with the atomic calculations, this implies that the weak nuclear charge of Cs is Qw = -68 ± 9. This value agrees with the standard electroweak theory and leads to a weak interaction angle sin2 θ W = 0.21 ± 0.04. The complementarity of these measurements with high energy experiments is illustrated.

3 data tables

Revision of the earlier experiment PL 117B, 358. (7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.

Revision of the earlier experiment PL 134B, 463. (7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.

Combined of the two above measurements following the philosophy: quadratic sum of the statistical and systematic uncertainties and weighting each result by the squared reciprocal of that uncertainty. (7s)2S1/2 --> (6s)2S1/2 transitions.


Measurement of Parity Nonconservation in Atomic Bismuth

Hollister, J.H. ; Apperson, G.R. ; Lewis, L.L. ; et al.
Phys.Rev.Lett. 46 (1981) 643-646, 1981.
Inspire Record 942914 DOI 10.17182/hepdata.20642

Parity-nonconserving optical rotation has been observed and measured on the 8757-ÅA magnetic-dipole absorption line in atomic bismuth vapor. The result, R≡Im(E1M1)=(−10.4±1.7)×10−8, is of the approximate size calculated with use of the Weinberg-Salam theory of the weak neutral-current interaction with sin2θW=0.23.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).