MEASUREMENTS OF THE STRUCTURE FUNCTIONS F2 (x, Q**2) FROM neutrino p AND ANTI-NEUTRINO p INTERACTIONS

The WA21 collaboration Grassler, H. ; Lanske, D. ; Schulte, R. ; et al.
OXFORD NP-79/84, 1984.
Inspire Record 15788 DOI 10.17182/hepdata.1180

None

2 data tables

NORMALISATION UNCERTAINTY IS 7 PCT.

NORMALISATION UNCERTAINTY IS 7 PCT.


Measurement of D mesons production in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
JHEP 07 (2007) 074, 2007.
Inspire Record 749371 DOI 10.17182/hepdata.45530

Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.

24 data tables

Production cross section for all D0 mesons, those not originating fom D* decays and those originating from D* decays.

Production cross section for additional D* mesons (not decaying to D0) and all D* mesons.

Production cross section for D+ mesons.

More…

Measurement of F2(c anti-c) and F2(b anti-b) at low Q**2 and x using the H1 vertex detector at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 45 (2006) 23-33, 2006.
Inspire Record 687625 DOI 10.17182/hepdata.46047

Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.

8 data tables

Measured NC reduced cross section for charm quarks.

Measuredstructure function F2 for charm quarks.

Measured NC reduced cross section for BOTTOM quarks.

More…

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Measurement of the hadronic photon structure function F2(gamma)(x, Q**2) in two-photon collisions at LEP

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 30 (2003) 145-158, 2003.
Inspire Record 631231 DOI 10.17182/hepdata.43218

The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between

4 data tables

Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.

Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.

Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.

More…

Measurement of D*+- production in deep inelastic e+- p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 69 (2004) 012004, 2004.
Inspire Record 626816 DOI 10.17182/hepdata.46419

Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.

17 data tables

Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of X.

More…

Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…

Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Measurement of the photon structure function at high Q**2 at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 483 (2000) 373-386, 2000.
Inspire Record 525764 DOI 10.17182/hepdata.49964

The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.

4 data tables

Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.

Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.

The effective F2 measured in double-tag events as a function of X.

More…

The Q**2 evolution of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 447 (1999) 147-156, 1999.
Inspire Record 479052 DOI 10.17182/hepdata.49323

New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.

1 data table

Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.


Measurement of the hadronic photon structure function at LEP1 for <Q**2> values between 9.9-GeV**2 and 284-GeV**2.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 458 (1999) 152-166, 1999.
Inspire Record 499917 DOI 10.17182/hepdata.49109

Inclusive γ ∗ γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F 2 γ in three bins with 〈 Q 2 〉 of 9.9, 20.7 and 284 GeV 2 .

10 data tables

The measured values of dsig/dx from the ECAL data in the Q**2 bin 35 to 3000 GeV**2 with a mean of 284 +- 49 GeV**2.

The measured values of dsig/dx from the LCAL data in the Q**2 bin 13 to 44 GeV**2 with a mean of 20.67 +- 016 GeV**2.

The measured values of dsig/dx from the LCAL data in the Q**2 bin 6 to 13 GeV**2 with a mean of 9.93 +- 0.04 GeV**2.

More…

Experimental Study of Differential Cross-sections in Charged Current Neutrino and Anti-neutrinos Interactions

The CHARM collaboration Jonker, M. ; Panman, J. ; Udo, F. ; et al.
Phys.Lett.B 109 (1982) 133-140, 1982.
Inspire Record 168613 DOI 10.17182/hepdata.6668

Inclusive neutrino and antineutrino charged-current interactions were studied using the electronic detector of the CHARM Collaboration exposed to the narrow-band beam of the CERN SPS. The relative contributions of quarks and antiquarks to the neutrino cross sections were deduced from the differential cross sectionsdσ/d y . The x and Q 2 dependence of the structure functions F 2 and F 3 were measured. Scaling violations were observed, in qualitative agreement with QCD. A value of the mass scale parameter of QCD,Λ = [0.29 ± 0.12 (stat.) ± 0.10 (syst.)] GeV, was deduced in a leading-order approximation, following the method of Buras and Gaemers.

7 data tables

No description provided.

No description provided.

No description provided.

More…

ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables
More…

Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

24 data tables

Cross section for diffractive scattering.

Cross section for diffractive scattering.

Cross section for diffracitve scattering.

More…

Study of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 436 (1998) 403-416, 1998.
Inspire Record 472644 DOI 10.17182/hepdata.49392

The hadronic photon structure function F γ 2 is studied in the reaction e + e − →e + e − hadrons at LEP with the L3 detector. The data, collected from 1991 to 1995 at a centre-of-mass energy s ≃91 GeV, correspond to an integrated luminosity of 140 pb −1 . The photon structure function F γ 2 is measured in the Q 2 interval 1.2 GeV 2 ≤ Q 2 ≤9.0 GeV 2 and the x interval 0.002< x <0.2. F γ 2 shows a linear growth with ln Q 2 . The value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured to be 0.079±0.011±0.009.

3 data tables

No description provided.

No description provided.

No description provided.


Photon structure functions and azimuthal correlations of lepton pairs in tagged gamma gamma collisions.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 438 (1998) 363-378, 1998.
Inspire Record 470997 DOI 10.17182/hepdata.49546

The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.

1 data table

The systematic and statistical errors added in quadrature. F2(NAME=FA) AND F2(NAME=FB) are related structure functions FA and FB, which originate from inerference terms of the scattering amplitudes. See text for exact definition and details.


A measurement of the photon structure function F2(gamma) at Q**2 = 6.8-GeV**2.

The AMY collaboration Kojima, T. ; Nozaki, T. ; Abe, K. ; et al.
Phys.Lett.B 400 (1997) 395-400, 1997.
Inspire Record 441558 DOI 10.17182/hepdata.28320

The photon structure function F 2 γ has been measured at an average Q 2 value of 6.8 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. The measured F 2 γ is compared with several QCD-based parton density models.

1 data table

No description provided.


A Measurement of the photon structure function F2(gamma) at an average Q**2 of 12-GeV**2/c**4

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1996) 223-234, 1996.
Inspire Record 396884 DOI 10.17182/hepdata.47867

None

2 data tables

No description provided.

Low x domain.


Extraction of the gluon density of the proton at small x

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 345 (1995) 576-588, 1995.
Inspire Record 379633 DOI 10.17182/hepdata.45038

The gluon momentum density xg ( x , Q 2 ) of the proton was extracted at Q 2 = 20 GeV 2 for small values of x between 4 × 10 −4 and 10 −2 from the scaling violations of the proton structure function F 2 measured recently by ZEUS in deep inelastic neutral current ep scattering at HERA. The extraction was performed in two ways. Firstly, using a global NLO fit to the ZEUS data on F 2 at low x constrained by measurementsfrom NMC at larger x ; and secondly using published approximate methods for the solution of the GLAP QCD evolution equations. Consistent results are obtained. A substantial increase of the gluon density is found at small x in comparison with the NMC result obtained at larger values of x .

2 data tables

Values of F2 and slope of F2 obtained from fits to the ZEUS paper used in the extraction of the gluon momentum distributions.

Gluon momenta distribution at Q**2 = 20.


A High Q**2 measurement of the photon structure function F2(gamma)

The AMY collaboration Sahu, S.K. ; Ebara, S. ; Nozaki, T. ; et al.
Phys.Lett.B 346 (1995) 208-216, 1995.
Inspire Record 392701 DOI 10.17182/hepdata.38361

The photon structure function F 2 γ has been measured at average Q 2 values of 73 and 390 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. F 2 γ is observed to be increasing as ln Q 2 . The x -dependence of F 2 γ , where x is the momentum fraction carried by the parton inside the photon, is also measured. The measurements are compared with several parton density models.

3 data tables

No description provided.

No description provided.

Errors contain both statistics and systematics.


Measurement of the photon structure function F2(gamma) and jet production at TRISTAN

The TOPAZ collaboration Muramatsu, K. ; Hayashii, H. ; Noguchi, S. ; et al.
Phys.Lett.B 332 (1994) 477-487, 1994.
Inspire Record 373856 DOI 10.17182/hepdata.38377

We have measured the photon structure function F 2 γ in the reaction e + e − → e + e − hadrons for average Q 2 values from 5.1 to 338 GeV 2 by using data collected by the TOPAZ detector at TRISTAN. The data have been corrected for detector effects and are compared with theoretical expectations based on QCD. The structure function F 2 γ increases as ln Q 2 , as expected. A sample of events with one or two distinct jets has been identified in the final state. Although two-jet events can be explained solely by the point-like perturbative part, one-jet events require a significant hadron-like part in addition.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement and QCD Analysis of the Photon Structure Function F2 (x, Q**2)

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Lackas, W. ; et al.
Nucl.Phys.B 281 (1987) 365, 1987.
Inspire Record 230592 DOI 10.17182/hepdata.33588

We present a measurement of the hadronic structure function F 2 γ ( x , Q 2 ) of the photon in the Q 2 range from 10 to 100 GeV 2 . Data were taken with the PLUTO detector at the e + e - storage ring PETRA. This measurement and previous PLUTO measurements in the Q 2 range of 1.5 to 16 GeV 2 are compared with higher order QCD calculations. The structure function is consistent with the predicted log Q 2 behaviour when charm contributions are subtracted. The x dependence can be well described for 0.1 < x < 0.9 by the regularization scheme of Antoniadis and Grunberg. Within their scheme the data yield a value of Λ MS = 183 + 65/ −40( stat. ) + 46/ −36( sys. ) MeV for the QCD scale parameter.

5 data tables

Data read from graph.

Data read from graph.

Data read from graph.

More…

Measurement of the photon structure function F2 (gamma) in the reaction e+ e- ---> e+ e- + hadrons at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 61 (1994) 199-208, 1994.
Inspire Record 358863 DOI 10.17182/hepdata.48474

We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.

2 data tables

Additional overall systematic error 5.9% not included.

Additional overall systematic error 5.9% not included.


A Measurement of the photon structure function F2

The AMY collaboration Sasaki, T. ; Yamagishi, Y. ; Tanaka, R. ; et al.
Phys.Lett.B 252 (1990) 491-498, 1990.
Inspire Record 299056 DOI 10.17182/hepdata.29524

The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.

4 data tables

X dependence at Q**2 = 73 GeV**2 for light quark data.

X dependence at Q**2 = 73 GeV**2 for total data.

Photon structure function F2 for total data.

More…

Precision Measurement of R = $\sigma^-$l / $\sigma^- T$ and F(2) in Deep Inelastic Electron Scattering

Dasu, S. ; De Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 61 (1988) 1061, 1988.
Inspire Record 262063 DOI 10.17182/hepdata.20079

We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

9 data tables

2.6 pct rad length target.

2.6 pct rad length target.

2.6 pct rad length target.

More…

Measurement of the Photon Structure Function F2 (Gamma) (x, Q**2) in the Region 0.2-GeV**2 < 7-GeV**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Z.Phys.C 34 (1987) 1, 1987.
Inspire Record 234578 DOI 10.17182/hepdata.15803

We present a measurement of the photon structure functionF2γ in the reactionee→eeX forQ2 in the range 0.2<Q2<7 GeV2, using 9,200 multihadron events obtained with the TPC/Two-Gamma detector at PEP. The data have been corrected for detector effects using a regularized unfolding procedure and are presented as a function ofx andQ2. The structure function shows scaling in the region 0.3<Q2<1.6 GeV2,x<0.3 and rises for higherQ2. AtQ2=5.1 GeV2 the results are compared with QCD and, within the scheme of Antoniadis and Grunberg, rather conservative bounds for the QCD scale parameter of 133±50<\(\Lambda _{\overline {{\rm M}S} } \)<268±98 MeV are obtained. A study of the final state structure shows that the rise ofF2γ is consistent with being entirely due to the pointlike component of the photon.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Structure Functions F2 and Xf3 and Comparison With {QCD} Predictions Including Kinematical and Dynamical Higher Twist Effects

The BEBC WA59 collaboration Varvell, K. ; Cooper-Sarkar, A.M. ; Parker, M.A. ; et al.
Z.Phys.C 36 (1987) 1, 1987.
Inspire Record 245094 DOI 10.17182/hepdata.15775

The isoscalar nucleon structure functionsF2(x, Q2) andxF3(x, Q2) are measured in the range 0<Q2<64 GeV2, 1.7<W2<250 GeV2,x<0.7 using ν and\(\bar v\) interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such lowW2 values, it is found that a low\(\Lambda _{\overline {MS} } \) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.

9 data tables

No description provided.

No description provided.

No description provided.

More…

INCLUSIVE STUDY OF NEUTRINO AND ANTI-NEUTRINO INTERACTIONS WITH NUCLEI AT ENERGIES E anti-neutrino <= 30-GeV

Ammosov, V.V. ; Baranov, D.S. ; Bugorsky, A.P. ; et al.
Z.Phys.C 30 (1986) 175, 1986.
Inspire Record 215974 DOI 10.17182/hepdata.15918

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

THE TPC / 2 gamma EXPERIMENT AT PEP

Bauer, Daniel A. ;
Paris Photon-Photon 1986:443, 1986.
Inspire Record 231357 DOI 10.17182/hepdata.76256
11 data tables

Data read off graph.

Data read off graph.

No description provided.

More…

Measurement of the Photon Structure Function f(2)Gamma at Q**2 from 7-GeV/c**2 to 70-GeV/c**2

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Gerhards, R. ; et al.
Z.Phys.C 31 (1986) 527, 1986.
Inspire Record 228251 DOI 10.17182/hepdata.15858

We have measured the processe+e−→e+e−+hadrons, where one of the scattered electrons was detected at large angles, withQ2 ranging from 7 to 70 (VeV/c)2. The photon structure functionF2γ(x, Q2) was determined at an averageQ2 of 23 (GeV/c)2. The measurements were compared to theoretical predictions of the Quark Parton Model and Quantum Chromodynamics. In both models a hadronic part was added. Within the errors the data are in agreement with the QPM using quark masses of 300 MeV/c2 for the light quarks. The data also agree with a QCD calculation including higher order corrections. A fit yielded a\(\Lambda _{\overline {MS} } \) value of 140−65+190 MeV, where the errors include statistical and systematic uncertainties.

1 data table

No description provided.


Experimental Study of the Hadronic Photon Structure Function

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Gumpel, U. ; et al.
Phys.Lett.B 126 (1983) 391-397, 1983.
Inspire Record 198110 DOI 10.17182/hepdata.30720

We have measured at PETRA the process e γ → e + hadrons at an average Q 2 value of 9 GeV 2 / c 2 . The total number of observed events attributed to this process is 215. Our data are compared to calculations based on the estimation of the photon structure function F 2 in the quark parton model and in QCD.

1 data table

No description provided.


Experimental Study of the Photon Structure Function F(2) in the High $Q^2$ Region

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 121 (1983) 203-208, 1983.
Inspire Record 180758 DOI 10.17182/hepdata.30781

We report on a measurement of the process e + e − →e + e − + hadrons, where one of the scattered electrons is detected at large angles, with an average Q 2 of 23 GeV. The results are analysed in terms of the photon structure function F 2 and are compared with QCD predictions.

3 data tables

Data read off graph.

Data read off graph.

Data read off graph.


Measurement of the Photon Structure Function F2 (x, Q**2)

The PLUTO collaboration Berger, Christoph ; Deuter, A. ; Genzel, H. ; et al.
Phys.Lett.B 142 (1984) 111-118, 1984.
Inspire Record 201376 DOI 10.17182/hepdata.30545

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

First Measurement of the Photon Structure Function F2

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 107 (1981) 168-172, 1981.
Inspire Record 167681 DOI 10.17182/hepdata.31043

Using data taken at PETRA we present results on deep inelastic electron photon scattering at momentum transfers 1 < Q 2 < 15 GeV 2 . The results are expressed in terms of the photon structure function F 2 and are compared with QCD predictions and “hadronic” models of the photon. The pointlike component of the photon is found to be dominant.

2 data tables

Data read from graph.. Data for W < 3.5 in Berger et al. 1981, PL 99B,287 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1164> RED = 1164 </a>).

PHOTON STRUCTURE FUNCTION. NUMERICAL VALUES OF DATA ON FIGURE SUPPLIED BY W. WAGNER.


Measurement of the Neutron and Proton Structure Functions From Neutrino and Anti-neutrinos Scattering in Deuterium

The WA25 collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 135 (1984) 231, 1984.
Inspire Record 192102 DOI 10.17182/hepdata.30611

Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.

1 data table

No description provided.


Q**2 Dependence of the Proton and Neutron Structure Functions from Neutrino and anti-neutrinos Scattering in Deuterium

Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Z.Phys.C 28 (1985) 321, 1985.
Inspire Record 213484 DOI 10.17182/hepdata.16015

12,100 νD and 10,500\(\bar vD\) charged current interactions in deuterium measured in the BEBC bubble chamber were used to obtain the complete set of structure functions of proton and neutron. Thex andQ2 dependence of the structure functions of up and down valence quarks and antiquarks are presented and discussed. The Adler and Gross-Llewellyn Smith sum rules have been tested at differentQ2 values. A QCD analysis of the four non singlet structure functionsxF3νN,xuv,xdv andF2νn−F2νp has been performed yielding values ofΛLO between 100 and 300 MeV.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

19 data tables

Measured charged current total cross section.

No description provided.

No description provided.

More…

A Comparison of the Deep Inelastic Structure Functions of Deuterium and Aluminum Nuclei

Bodek, A. ; Giokaris, N. ; Atwood, W.B. ; et al.
Phys.Rev.Lett. 51 (1983) 534, 1983.
Inspire Record 189856 DOI 10.17182/hepdata.20489

The deep-inelastic electromagnetic structure functions of deuterium and aluminum nuclei have been measured. The kinematic dependence of the ratio of aluminum and deuterium structure functions is similar to the dependence of the ratio of steel and deuterium structure functions, and provides further evidence for the distortion of the quark momentum distributions of nucleons bound in a nucleus.

1 data table

No description provided.


Electron Scattering from Nuclear Targets and Quark Distributions in Nuclei

Bodek, A. ; Giokaris, N. ; Atwood, W.B. ; et al.
Phys.Rev.Lett. 50 (1983) 1431, 1983.
Inspire Record 188877 DOI 10.17182/hepdata.20553

The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.

1 data table

No description provided.


Determination of the Quark Density Ratio $d(x)/u(x)$ in the Proton

The Aachen-Bonn-CERN-Munich-Oxford collaboration Allen, P. ; Grassler, H. ; Lanske, D. ; et al.
Phys.Lett.B 103 (1981) 71-74, 1981.
Inspire Record 10562 DOI 10.17182/hepdata.31204

Data from an exposure of BEBC filled with hydrogen to a wideband neutrino beam are analysed to yield the structure function F v p 2 ( x ) for x > 0.2. Using our results in combination with data from electron-proton and muon-proton scattering, the quark density ratio d/u is determined as a function of x . The dominance u at large x is clearly seen. The results are compared with theoretical predictions.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Study of the Nucleon Structure Functions and of the Gluon Distribution from Charged Current Neutrino and anti-neutrinos Interactions

The CHARM collaboration Bergsma, F. ; Dorenbosch, J. ; Jonker, M. ; et al.
Phys.Lett.B 123 (1983) 269, 1983.
Inspire Record 181908 DOI 10.17182/hepdata.30729

Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.

2 data tables

No description provided.

HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.


The Ratio of the Nucleon Structure Functions f2 (n) for Iron and Deuterium

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 123 (1983) 275-278, 1983.
Inspire Record 188925 DOI 10.17182/hepdata.30745

Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.

1 data table

RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.


A Measurement of Nuclear Effects in Deep Inelastic Muon Scattering on Deuterium, Nitrogen and Iron Targets

The BCDMS collaboration Bari, G. ; Benvenuti, A.C. ; Bollini, D. ; et al.
Phys.Lett.B 163 (1985) 282, 1985.
Inspire Record 216817 DOI 10.17182/hepdata.30331

New data is presented on the ratios of structure functions F 2 ( x , Q 2 ) measured in deep inelastic muon scattering with deuterium, nitrogen, and iron targets. The existence of nuclear effects at large Q 2 is confirmed with improved systematic accuracy. The ratio F 2 Fe ( x ) F 2 D 2 ( x ) covers the range 0.20 ⩽ x ⩽ 0.70 and is in agreement with earlier measurements. The ratio F 2 N 2 ( x )/ F 2 D 2 ( x ) is measured over the range 0.08 ⩽ x ⩽ 0.70 and is compatible with unity below x = 0.3.

2 data tables

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 46-106,46-106,53-150,53-200,70-200,80-200 RESPECTIVELY.

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 26-40,26-61,30-80,30-106,30-106,30-150,30-200,35-200,46-200.


Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

50 data tables

ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

More…