Cross Sections for Antiprotons in Hydrogen, Beryllium, Carbon, and Lead

Cork, Bruce ; Lambertson, Glen R. ; Piccioni, Oreste ; et al.
Phys.Rev. 107 (1957) 248-256, 1957.
Inspire Record 944999 DOI 10.17182/hepdata.26942

A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.

4 data tables
More…

Measurement of the isolated prompt photon cross-sections in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 2734-2738, 1992.
Inspire Record 333081 DOI 10.17182/hepdata.19869

We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.

1 data table

Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.


K--p and K--n Cross Sections in the Momentum Range 1-4 Bev/c

Cook, V. ; Cork, Bruce ; Hoang, T.F. ; et al.
Phys.Rev. 123 (1961) 320-332, 1961.
Inspire Record 46822 DOI 10.17182/hepdata.26808

The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.

1 data table

No description provided.


Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables

No description provided.

No description provided.

No description provided.

More…