CROSS-SECTIONS FOR PI- + P ---> N + (K) PI0 (K = 1 TO 5) AND PI- + P ---> N + ETA0 (ETA0 ---> 2 GAMMA) FOR INCIDENT PION MOMENTA BETWEEN 1.3-GEV/C AND 3.8-GEV/C

Crouch, H.R. ; Hargraves, R. ; Lanou, R.E. ; et al.
Phys.Rev.D 21 (1980) 3023-3058, 1980.
Inspire Record 158169 DOI 10.17182/hepdata.4334

This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.

41 data tables

No description provided.

SIG = 4*PI*LEG(L=0).

FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.

More…

Measurement of $\bar{p} p \to \pi^0 \pi^0$, $\pi^0$ Eta0 in the $T$ and U Meson Region

Dulude, R.S. ; Lanou, R.E. ; Massimo, J.T. ; et al.
Phys.Lett.B 79 (1978) 329-334, 1978.
Inspire Record 130456 DOI 10.17182/hepdata.27379

We present measurements from a counter-optical spark chamber experiment of the differential cross sections for p̄p → π 0 π 0 , π 0 η 0 at 25 momenta in the range 1.1 − 2.0 GeV/ c (c.m. energy 2.12 to 2.43 GeV). Approximately 750 000 pictures were taken in the experiment.

4 data tables

THE ANGULAR DISTRIBUTIONS IN THE PUBLISHED FIGURES ARE NOT TABULATED HERE SINCE THEY ARE ONLY RECONSTRUCTED FROM THE LEGENDRE EXPANSION COEFFICIENTS WHICH WERE MEASURED DIRECTLY FROM THE DATA.

No description provided.

LEGENDRE COEFFICIENTS NORMALIZED SO THAT LEG(L=0) = SIG/(2*PI) (IDENTICAL PARTICLES IN FINAL STATE). THESE ARE PLOTTED IN FIG. 1 OF THE FOLLOWING PAPER.

More…