Scaling violations of quark and gluon jet fragmentation functions in e+ e- annihilations at s**(1/2) = 91.2-GeV and 183-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 37 (2004) 25-47, 2004.
Inspire Record 648738 DOI 10.17182/hepdata.74689

Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.

11 data tables

The udsc jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig.7.

The b jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig. 8. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-70 GeV, no measurement was possible due to low statistics.

The gluon jet fragmentation functions in bins of $x_{\rm E}$ and scale $Q_{\rm jet}$ obtained from the biased jets using the b-tag method (BT). These data are displayed in Fig. 9. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-42 GeV for the b-tag method, no measurement was possible due to low statistics.

More…

Inclusive single-particle production in two-photon collisions at LEP II with the DELPHI detector

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 678 (2009) 444-449, 2009.
Inspire Record 824322 DOI 10.17182/hepdata.52859

A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigma/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.

1 data table

Differential inclusive DSIG/DPT distribution of charged particles produced in GAMMA* GAMMA* interaction with two pseudorapidity cut offs.


Measurement of the $e^+e^- \to W^+W^-$ cross section and W decay branching fractions at LEP

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 52 (2007) 767-785, 2007.
Inspire Record 757918 DOI 10.17182/hepdata.48533

From a total data sample of 701.1 pb^-1 recorded with e+e- centre-of-mass energies of sqrt = 161-209 GeV with the OPAL detector at LEP, 11693 W-pair candidate events are selected. These data are used to obtain measurements of the W-pair production cross sections at 10 different centre-of-mass energies. The ratio of the measured cross sections to the Standard Model expectation is found to be: data/SM = 1.002 +- 0.011(stat.) +- 0.007(syst.) +- 0.005(theory), where the uncertainties are statistical, experimental systematics and theory systematics respectively. The data are used to determine the W boson branching fractions, which are found to be consistent with lepton universality of the charged current interaction. Assuming lepton universality, the branching ratio to hadrons is determined to be 67.41 +- 0.37(stat.) +- 0.23(syst.)%, from which the CKM matrix element Vcs is determined to be 0.96+-0.017(stat.)+-0.012(syst.). The differential cross section as a function of the W^- production angle is measured for the qqev and qqmv final states. The results described in this paper are consistent with the expectations from the Standard Model.

5 data tables

Measured cross section for the (lepton nu lepton nu) decay mode.

Measured cross section for the (quark quark lepton nu) decay mode.

Measured cross section for the (quark quark quark quark) decay mode.

More…

Inclusive Jet Production in Photon-Photon Collisions at $\sqrt{s_{ee}}$ from 189 to 209 GeV

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 658 (2008) 185-192, 2008.
Inspire Record 754316 DOI 10.17182/hepdata.48798

Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.

2 data tables

Inclusive jet cross section for the absolute jet pseudorapidity < 1.0.

Inclusive jet cross section for the absolute jet pseudorapidity < 1.5.


Study of double-tagged gamma gamma events at LEP II.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 46 (2006) 559-568, 2006.
Inspire Record 704268 DOI 10.17182/hepdata.48974

Double-tagged interactions of photons with virtualities Q^2 between 10 GeV^2 and 200 GeV^2 are studied with the data collected by DELPHI at LEPII from 1998 to 2000, corresponding to an integrated luminosity of 550 pb^{-1}. The gam* gam* -> mu+mu- data agree with QED predictions. The cross-section of the reaction gam* gam* -> hadrons is measured and compared to the LO and NLO BFKL calculations.

4 data tables

Measured cross section for the process E+ E- --> E+ E- HADRONS.

Measured cross section for the process GAMMA* GAMMA* --> HADRONS.

Differential cross section for GAMMA* GAMMA* --> MU+ MU-.

More…

Inclusive jet production in two-photon collisions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 602 (2004) 157-166, 2004.
Inspire Record 661114 DOI 10.17182/hepdata.48848

Inclusive jet production, e+e- -> e+e- \ee$ jet X, is studied using 560/pb of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The inclusive differential cross section is measured using a k_t jet algorithm as a function of the jet transverse momentum, pt, in the range 3&lt;pt&lt;50 GeV for a pseudorapidity, eta, in the range -1&lt;eta&lt;1. This cross section is well represented by a power law. For high pt, the measured cross section is significantly higher than the NLO QCD predictions, as already observed for inclusive charged and neutral pion production.

1 data table

No description provided.


Measurement of the photon structure function F2(gamma) with the L3 detector at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 622 (2005) 249-264, 2005.
Inspire Record 687095 DOI 10.17182/hepdata.48675

The e+e- -> e+e- hadrons reaction, where one of the two electrons is detected in a low polar-angle calorimeter, is analysed in order to measure the hadronic photon structure function F2gamma . The full high-energy and high-luminosity data set, collected with the L3 detector at centre-of-mass energies 189-209GeV, corresponding to an integrated luminosity of 608/pb is used. The Q^2 range 11-34GeV^2 and the x range 0.006-0.556 are considered. The data are compared with recent parton density functions.

16 data tables

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 11 TO 14 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 14 TO 20 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 20 TO 34 GeV**2.

More…

Measurement of exclusive rho0 rho0 production in mid-virtuality two-photon interactions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 604 (2004) 48-60, 2004.
Inspire Record 662726 DOI 10.17182/hepdata.48649

Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV &lt; sqrt{s} &lt; 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 &lt; q^2 &lt; 0.85GeV^2 and 1.1GeV &lt; Wgg &lt; 3GeV.

4 data tables

Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.

Production cross section for two-photon data as a function of Q**2.

Production cross section as a function of W.

More…

Measurement of exclusive rho+ rho- production in mid-virtuality two-photon interactions and study of the gamma gamma* --> rho rho process at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 615 (2005) 19-30, 2005.
Inspire Record 680120 DOI 10.17182/hepdata.48814

Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 &lt; Q^2 &lt;0.85GeV^2 and 1.1GeV &lt; W_gg &lt; 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 &lt; Q^2 &lt; 30 GeV^2.

4 data tables

Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.

Production cross section for two-photon data as a function of Q**2.

Production cross section as a function of W.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV to 209-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 33 (2004) 173-212, 2004.
Inspire Record 628491 DOI 10.17182/hepdata.43174

Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.

18 data tables

CM energy values.

Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.

Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.

More…