Study of the reaction k+ p ---> k*0(890) delta++ from 4.6-16.0 gev/c

Ciapetti, G. ; Eisner, R.L. ; Irving, A.C. ; et al.
Nucl.Phys.B 64 (1973) 58-108, 1973.
Inspire Record 94946 DOI 10.17182/hepdata.6741

A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Pi-minus + p ---> k-neutral + lambda/sigma-neutral associated production in the forward direction at 6,8,10 and 11.2 gev/c

Bertolucci, E. ; Mannelli, I. ; Pierazzini, G. ; et al.
Lett.Nuovo Cim. 2S1 (1969) 149-155, 1969.
Inspire Record 58290 DOI 10.17182/hepdata.37419

None

2 data tables

Only statistical errors are given.

Only statistical errors are given.


Vector Meson Production by Polarized Photons at 2.8-GeV, 4.7-GeV, and 9.3-GeV

Ballam, Joseph ; Chadwick, G.B. ; Eisenberg, Y. ; et al.
Phys.Rev.D 7 (1973) 3150, 1973.
Inspire Record 73602 DOI 10.17182/hepdata.43496

We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.

47 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of 20 exclusive reactions at large t

White, C. ; Appel, R. ; Barton, D.S. ; et al.
Phys.Rev.D 49 (1994) 58-78, 1994.
Inspire Record 377535 DOI 10.17182/hepdata.50306

We report a study of 20 exclusive reactions measured at the AGS at 5.9 GeV/c incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadron-hadron scattering at large angle. At 9.9 GeV/c an upper limit had been set for the ratio of cross sections for (p¯p→p¯p)(pp→pp) at 90° c.m., with the ratio less than 4%. The present experiment was performed at lower energy to gain sensitivity, but was still within the fixed angle scaling region. A ratio R(p¯ppp)≈140 was measured at 5.9 GeV/c, 90° c.m. in comparison to a ratio near 1.7 for small angle scattering. In addition, many other reactions were measured, often for the first time at 90° c.m. in the scaling region, using beams of π±, K±, p, and p¯ on a hydrogen target. There are similar large differences in cross sections for other reactions: R(K−p→π+Σ−K−p→π−Σ+)≈112, for example. The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.

21 data tables

Cross sections at 90 degrees in the centre-of-mass.

No description provided.

No description provided.

More…

Measurement of Elastic electron Scattering from the Proton at High Momentum Transfer

Arnold, R.G. ; Bosted, Peter E. ; Chang, C.C. ; et al.
Phys.Rev.Lett. 57 (1986) 174, 1986.
Inspire Record 228320 DOI 10.17182/hepdata.3133

We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.

14 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF THE RATIO OF THE PROTON FORM-FACTORS, G(E) / G(M), AT HIGH MOMENTUM TRANSFERS AND THE QUESTION OF SCALING

Litt, J. ; Buschhorn, G. ; Coward, D.H. ; et al.
Phys.Lett.B 31 (1970) 40-44, 1970.
Inspire Record 54895 DOI 10.17182/hepdata.28767

Electron-proton elastic scattering cross sections have been measured at the Stanford Linear Accelerator Center at four-momentum transfers squared (q 2 ) of 1.0, 1.5, 2.0, 2.5and 3.75 (GeV/ c ) 2 . The angular distributions at q 2 = 2.5 and 3.75 (GeV/ c ) 2 are sufficient to provide values of the ratio G E / G M independent of the results from other laboratories. Our results are compatible with scaling, G E (q 2 ) = G M (q 2 )/ μ , within the experimental errors.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Exclusive $\rho^0$, $\omega$ and $\phi$ Electroproduction

Cassel, D.G. ; Ahrens, L.A. ; Berkelman, Karl ; et al.
Phys.Rev.D 24 (1981) 2787, 1981.
Inspire Record 166020 DOI 10.17182/hepdata.24050

We have measured exclusive ρ0, ω, and φ meson electroproduction at the Cornell Wilson Synchrotron. The final ρ0 data sample included 4637 four-constraint e+p→e+π++π−+p events, with incident energy E=11.5 GeV and electroproduction variables Q2 and W in the region 0.7<Q2<4 GeV2 and 1.9<W<4 GeV. We find that the width of the forward ρ0 diffraction peak increases rapidly as the lifetime of the intermediate hadron states decreases below cΔτ=1 fm and that the peak is wider for longitudinal ρ0 than it is for transverse ρ0. The longitudinal-transverse cross-section ratio Rp=σLσT, obtained assuming s-channel helicity conservation, becomes constant at high Q2. At fixed W the diffractive vector-meson-dominance (VMD) model reproduces the Q2 dependence of our cross section, σ=(σT+εσL), but is is not able to account for the rapid decrease in the cross section with increasing W we observe. We find that σωσρ depends on W but is independent of Q2 for 0.7<Q2<3 GeV2 and 2.2<W<3.7 GeV. However, σω is substantially larger than the diffractive VMD cross section. Our results for σφ are consistent with the Q2 dependence of the diffractive VMD model for 0.8<Q2<4 GeV2 and 2<W<3.7 GeV, but this model again fails to predict the W dependence we observe.

8 data tables

FOUR CHANNEL FIT TO TWO PION PRODUCTION ASSUMING NO INTERFERENCE.

DEPENDENCE OF TOTAL, LONGITUDINAL (L) AND TRANSVERSE (U) DIFFERENTIAL CROSS SECTIONS ON C*DELTA(TAU), THE FORMATION TIME FOR VIRTUAL INTERMEDIATE HADRON STATES. DELTA(TAU) IS 1/DELTA(E) WHERE DELTA(E) IS E(RF=LAB,P=3) - NU = SQRT(NU**2 + Q2 + M(RHO)**2) - NU.

No description provided.

More…

THE REACTION K0(L) p ---> K0(S) p FROM 1.3-GeV/c TO 8.0-GeV/c

Brody, A.D. ; Johnson, William B. ; Kehoe, B. ; et al.
Phys.Rev.Lett. 26 (1971) 1050, 1971.
Inspire Record 67120 DOI 10.17182/hepdata.21557

Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.

7 data tables

No description provided.

FULL T REGION.

FULL T REGION.

More…