Backward pi- p Reactions Between 0.6-GeV/c and 1-GeV/c

Debenham, N.C. ; Binnie, D.M. ; Camilleri, L. ; et al.
Phys.Rev.D 12 (1975) 2545-2556, 1975.
Inspire Record 104820 DOI 10.17182/hepdata.24845

Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.

2 data tables

No description provided.

No description provided.


CROSS-SECTIONS FOR PI- + P ---> N + (K) PI0 (K = 1 TO 5) AND PI- + P ---> N + ETA0 (ETA0 ---> 2 GAMMA) FOR INCIDENT PION MOMENTA BETWEEN 1.3-GEV/C AND 3.8-GEV/C

Crouch, H.R. ; Hargraves, R. ; Lanou, R.E. ; et al.
Phys.Rev.D 21 (1980) 3023-3058, 1980.
Inspire Record 158169 DOI 10.17182/hepdata.4334

This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.

41 data tables

No description provided.

SIG = 4*PI*LEG(L=0).

FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.

More…