Jet Production and Fragmentation in e+ e- Annihilation at 12-GeV to 43-GeV

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 307-340, 1984.
Inspire Record 195333 DOI 10.17182/hepdata.16272

We present the general properties of jets produced bye+e− annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee+e− annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofxp=2p/W are presented; scale breaking is observed at the level of 25%. The quantityxpdδ/dxp is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e+e−→Q\(\bar Q\) for quark masses up to 5<mQ<20.3 GeV (|eQ|=2/3) and 7<mQ<19 GeV (|eQ|=1/3). The comparison of 1/σtotdδ/dpT measured at 14, 22 and 34 GeV suggests that hard gluon bremsstrahlung contributes mainly to transverse momenta larger than 0.5 GeV/c. The rapidity distribution forW≧22 GeV shows an enhancement away fromy=0 which corresponds to an increase in yield of 10–15% compared to the centre region (y=0). The enhancement probably results from heavy quark production and gluon bremsstrahlung. The particle flux around the jet axis shows with increasing c.m. energy a rapidly growing number of particles collimated around the jet axis, while at large angles to the jet axis almost noW dependence is observed. For fixed longitudinal momentump‖ approximate “fan invariance” is seen: The shape of the angular distribution around the jet axis is almost independent ofW. The collimation depends strongly onp‖. For smallp‖,p‖<0.2 GeV/c, isotropy is observed. With increasingp‖ the particles tend to be emitted closer and closer to the jet axis.

14 data tables

R VALUES BELOW 32.5 GEV ARE IDENTICAL TO THOSE GIVEN IN BRANDELIK ET AL., PL 113B, 499 (1982).

No description provided.

CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS.

More…

Evidence for Planar Events in e+ e- Annihilation at High-Energies

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 86 (1979) 243-249, 1979.
Inspire Record 142123 DOI 10.17182/hepdata.27312

Hadron jets produced in e + e − annihilation between 13 GeV and 31.6 GeV in c.m. at PETRA are analyzed. The transverse momentum of the jets is found to increase strongly with c.m. energy. The broadening of the jets is not uniform in azimuthal angle around the quark direction but tends to yield planar events with large and growing transverse momenta in the plane and smaller transverse momenta normal to the plane. The simple q q collinear jet picture is ruled out. The observation of planar events shows that there are three basic particles in the final state. Indeed, several events with three well-separated jets of hadrons are observed at the highest energies. This occurs naturally when the outgoing quark radiates a hard noncollinear gluon, i.e., e + e − → q q g with the quarks and the gluons fragmenting into hadrons with limited transverse momenta.

1 data table

NORMALIZED TRANSVERSE MOMENTUM DISTRIBUTION WITH RESPECT TO THE SPHERICITY AXIS AT 13, 17, AND 27.4 TO 31.6 GEV.