A kinematically complete measurement of K+ --> pi+ pi0 pi0 decays.

The KEK PS E246 collaboration Shin, Y.H. ; Abe, M. ; Aoki, M. ; et al.
Eur.Phys.J.C 12 (2000) 627-631, 2000.
Inspire Record 526005 DOI 10.17182/hepdata.24453

None

1 data table

The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.


The charge form factor of the neutron from the reaction H-2(pol.)(e(pol.),e' n)p.

Passchier, I. ; Alarcon, R. ; Bauer, T.S. ; et al.
Phys.Rev.Lett. 82 (1999) 4988-4991, 1999.
Inspire Record 504073 DOI 10.17182/hepdata.31239

We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720~MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A^V_{ed} was measured for the reaction \pol{2H}(\pol{e},e'n)p at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.

1 data table

No description provided.


Measurement of the branching ratio for D/s- --> tau- anti-nu/tau decays.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 516 (2001) 236-248, 2001.
Inspire Record 553945 DOI 10.17182/hepdata.49836

Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies near MZ the branching ratio for the decay D_s -> tau nu_tau has been measured to be (7.0 +/- 2.1(stat) +/- 2.0 (syst))%. This result can be used to derive the decay constant of the D_s meson: f(D_s) = 286 +/- 44(stat) +/- 41(syst) MeV.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant.


Measurement of the Sigma- charge radius by Sigma- electron elastic scattering.

The SELEX collaboration Gough Eschrich, Ivo M. ; Kruger, H. ; Simon, J. ; et al.
Phys.Lett.B 522 (2001) 233-239, 2001.
Inspire Record 558329 DOI 10.17182/hepdata.42898

The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.

1 data table

Total systematic errors are given.


The transverse asymmetry A(T') from quasielastic polarized He-3(pol.)(e(pol.),e') process and the neutron magnetic form factor.

Xu, W. ; Dutta, D. ; Xiong, F. ; et al.
Phys.Rev.Lett. 85 (2000) 2900-2904, 2000.
Inspire Record 531416 DOI 10.17182/hepdata.31474

We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.

1 data table

Ratio of neutron magnetic form-factor to dipole value.


Electroproduction of the Delta Resonance at High Momentum Transfer

Frolov, V.V. ; Adams, G.S. ; Ahmidouch, A. ; et al.
Phys.Rev.Lett. 82 (1999) 45-48, 1999.
Inspire Record 475116 DOI 10.17182/hepdata.41616

We studied the electroproduction of the Delta(1232) resonance via the reaction p(e,e'p)\pi0 at four-momentum transfers Qsq = 2.8 and 4.0 GeV^2. This is the highest Qsq for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for Delta to p-pi0$ were measured over a wide range of barycentric energies covering the resonance. The $N-\Delta$ transition form factor G*_M and ratios of resonant multipoles E{1+}/M{1+} and S{1+}/M{1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers.

4 data tables

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to ma gnetic dipole moment, respectively (see paper). Resonance + background.

More…

Measurements of B ---> D(s)+ X decays

The CLEO collaboration Gibaut, D. ; Kinoshita, K. ; Pomianowski, P. ; et al.
Phys.Rev.D 53 (1996) 4734-4746, 1996.
Inspire Record 401599 DOI 10.17182/hepdata.47241

This paper describes new measurements from CLEO of the inclusive B→Ds+X branching fraction as well as the B+→Ds(*)+D¯(*)0 and B0→Ds(*)+D(*)− branching fractions. The inclusive branching fraction is B(B→Ds+X)=(12.11±0.39±0.88±1.38)% where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the Ds+→φπ+ branching fraction. The branching fractions for the B→Ds(*)+D¯(*) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements. The sum of the B→Ds(*)+D¯(*) branching fractions is consistent with the results of fits to the inclusive Ds+ momentum spectrum. Factorization is used to arrive at a value for fDs, the Ds+ decay constant. © 1996 The American Physical Society.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant. Three different methods are used: 1) C=MUNU: D/S+ --> MU+ NUMU, 2) C = ENU: B --> D/S+ D*BAR / B --> D*BAR E+ NU, and 3) C = PI : B --> D/S+ D*BAR / B0 - -> PI+(RHO+) D*BAR-. The F(D/S) is evaluated from B decay assuming the factorization.


Studies of the Cabibbo-suppressed decays D+ --> pi0 l+ nu and D+ --> eta e+ nu/e.

The CLEO collaboration Bartelt, John E. ; Csorna, S.E. ; Jain, V. ; et al.
Phys.Lett.B 405 (1997) 373-378, 1997.
Inspire Record 441553 DOI 10.17182/hepdata.47235

Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.

1 data table

Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).


Measurement of Structure Dependent K^+ -> mu^+ nu gamma

The E787 collaboration Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 85 (2000) 2256-2259, 2000.
Inspire Record 525021 DOI 10.17182/hepdata.19424

We report the first measurement of a structure dependent component in the decay K^+ -> mu^+ nu gamma. Using the kinematic region where the muon kinetic energy is greater than 137 MeV and the photon energy is greater than 90 MeV, we find that the absolute value of the sum of the vector and axial-vector form factors is |F_V+F_A| =0.165 \pm 0.007 \pm 0.011. This corresponds to a branching ratio of BR(SD^+) = (1.33 \pm 0.12 \pm 0.18) \times 10^{-5}. We also set the limit -0.04 &lt; F_V-F_A &lt; 0.24 at 90% c.l.

1 data table

Q2 independence of the formfactors is assumed.


A measurement of the electric form-factor of the neutron through d(pol.)(e(pol.),e' n)p at Q**2 = 0.5-(GeV/c)**2.

The E93026 collaboration Zhu, H. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 87 (2001) 081801, 2001.
Inspire Record 556212 DOI 10.17182/hepdata.31418

We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

1 data table

No description provided.