Energy dependence of pion and kaon production in central Pb + Pb collisions.

The NA49 collaboration Afanasiev, S.V. ; Anticic, T. ; Barna, D. ; et al.
Phys.Rev.C 66 (2002) 054902, 2002.
Inspire Record 586383 DOI 10.17182/hepdata.31729

Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.

33 data tables

The centrality of the collisions expressed as a percentage of the inelastic cross section (7.15nb), and the mean numbers of wounded nuclei.

The inverse slope parameter of the fitted transverse mass spectra.

The rapidity density averaged over the rapidity interval -0.6 to 0.6.

More…

A study of pseudoscalar states produced centrally in p p interactions at 450-GeV/c.

The WA102 collaboration Barberis, D. ; Beusch, W. ; Binon, F.G. ; et al.
Phys.Lett.B 427 (1998) 398-402, 1998.
Inspire Record 468687 DOI 10.17182/hepdata.41628

A study has been made of pseudoscalar mesons produced centrally in pp interactions. The results show that the eta and etaprime appear to have a similar production mechanism which differs from that of the pi0. The production properties of the eta and etaprime are not consistent with what is expected from double Pomeron exchange. In addition the production mechanism for the eta and etaprime is such that the production cross section are greatest when the azimuthal angle between the pT vectors of the two protons is 90 degrees.

3 data tables

No description provided.

Resonance production as a function of dPT - the difference in the transverse momentum vectors of the two exchange particles, expressed as a percentage of its total contribution.

T distributions have been fitted to the form D(SIG)/D(T) = const(NAME=ALPHA)*EXP(-SLOPE(C=1)*T) + const(NAME=BETA)*T**2*EXP(-SLOPE(C=2)*T).