Absence of suppression in particle production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072303, 2003.
Inspire Record 621391 DOI 10.17182/hepdata.143668

Transverse momentum spectra of charged hadrons with p_T < 8 GeV/c and neutral pions with p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_NN) = 200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt(s_NN) scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.

10 data tables

Midrapidity $p_T$ spectra for charged hadrons.

Midrapidity $p_T$ spectra for $\pi^0$.

Nuclear modification factor $R_{dA}$ for $\pi^0$ in the PbGl and PbSc calorimeters in minimum bias $d$+$Au$.

More…

Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at $\sqrt{s_{\rm NN}}$ = 62 and 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 064902, 2012.
Inspire Record 927960 DOI 10.17182/hepdata.101346

We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture.

21 data tables

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

More…

Antiproton-proton cross sections at 200 and 900 {GeV} c.m. energy

The UA5 collaboration Alner, G.J. ; Ansorge, R.E. ; Asman, B. ; et al.
Z.Phys.C 32 (1986) 153-161, 1986.
Inspire Record 229896 DOI 10.17182/hepdata.15857

Data on antiproton-proton cross sections at the c.m. energies 200 and 900 GeV are presented. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode in which the same beams were accelerated and decelerated between beam energies of 450 and 100 GeV. The properties of the machine determine the ratio of the luminosities at the two energies to about 1% and thus an accurate measurement of the ratioR of the inelastic cross sections could be made. We findR (=σ900/σ200)=1.20±0.01±0.02, where the first error is statistical and the second systematic. Interpolating existing data to estimateσine1(200 GeV) this measurement ofR leads toσine1(900 GeV)=50.3+0.4+1.0 mb. Using an extrapolated value ofσe1/σtot we estimate the total cross section at 900 GeV to be 65.3±0.7±1.5 mb. Both the inelastic and total cross sections are compatible with a ln2s dependence. Comparisons are made with different fits to the total cross section energy dependence.

2 data tables

Ratio of inelastic cross sections at 900 and 200 Gev.

Estimate of 900 Gev total cross section based on a) interpolation to obtain total cross section at sqrt(s)=200 Gev (51.6 +- 0.4mb.) b) interpolation and extrapolation to obtain the ratio of elastic to total cross sections at 200 & 900 Gev (0.19 +- 0.01 and 0.23 +- 0.01 respectively).


Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 251601, 2009.
Inspire Record 830686 DOI 10.17182/hepdata.98578

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a \P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

3 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV calculated using Eq. 2. The thick solid (Au+Au) and dashed (Cu+Cu) lines represent HIJING calculations of the contributions from 3-particle correlations. Shaded bands represent uncertainty from the measurement of $v_{2}$. Collision centrality increases from left to right.

Dependence of $\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ on $\frac{1}{2}(p_{t,\alpha}+p_{t,\beta})$ calculated using no upper cut on particles’ $p_{t}$. Shaded bands represent $v_{2}$ uncertainty.

$\langle cos(\phi_{\alpha} + \phi_{\beta} − 2\Psi_{RP})\rangle$ results from 200 GeV Au+Au collisions are compared to calculations with event generators HIJING (with and without an “elliptic flow afterburner”),UrQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.


Azimuthal angle correlations for rapidity separated hadron pairs in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 222301, 2006.
Inspire Record 712584 DOI 10.17182/hepdata.142147

We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.

6 data tables

Azimuthal angle correlation functions. Note that the y-axis is zero-suppressed on the middle and bottom panels. In the additonal resource, the Gaussian widths from the fits and the signal to background ration integrated over $\pi$ - 1 < $\Delta\phi$ < $\pi$ + 1 are shown.

Conditional yields (CY) shown as a function of trigger particle pseudorapitidy for trigger particle $p_T$ from 2.5 to 4.0 and associated particle $p_T$ from 1.0 to 2.5 GeV/$c$. The additional $\pm$0.037 systematic error on the mid-rapidity $p+p$ point is from jet yield extraction. There is a 1% point-by-point systematical error on all points except central arm triggers. There is also a 10% systematic error for all data points due to the determination of associated particle efficiency. For $p + p$ point, forward and backward trigger are combined, so the results are identical.

$I_{dAu}$ vs. $p_T^{assoc}$ for different centrality, $p_T^{trig}$ and $\eta^{trig}$ bins.

More…

Azimuthal anisotropy and correlations at large transverse momenta in p + p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 93 (2004) 252301, 2004.
Inspire Record 654226 DOI 10.17182/hepdata.100594

Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at $\sqrt{s_{_{NN}}}$= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in $p+p$ at the same energy. Elliptic anisotropy, $v_2$, is found to reach its maximum at $p_t \sim 3$ GeV/c, then decrease slowly and remain significant up to $p_t\approx 7$ -- 10 GeV/c. Stronger suppression is found in the back-to-back high-$p_t$ particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of $v_2$ at intermediate $p_t$ is compared to simple models based on jet quenching.

5 data tables

Azimuthal correlations in Au+Au col- lisions (squares) as a function of centrality (peripheral to cen- tral from left to right) compared to minimum bias azimuthal correlations in p + p collisions (circles). Errors are statistical only.

$v_{2}$ of charged particles as a function of transverse momentum from the two-particle cumu- lant method (triangles) and four-particle cumulant method (stars). Open circles show the 2-particle correlation results after subtracting the correlations measured in p + p collisions. Only statistical errors are shown.

Upper panel, Azimuthal distributions of associated particles for trigger particles in-plane (squares) and out-of-plane (triangles) for Au+Au collisions at centrality 20-60%. Open symbols are reflections of solid symbols around $\Delta \phi$ = 0 and $\Delta \phi$ = $\pi$. Elliptic flow contribution is shown by dashed lines. Lower panel, Distributions after substracting elliptic flow, and the corresponding measurement in p + p collisions (histogram).

More…

Azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 014904, 2005.
Inspire Record 660793 DOI 10.17182/hepdata.93262

The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.

53 data tables

Directed flow of charged hadrons v1{3} as a function of pseudorapidity for 10–70% centrality.

Directed flow of charged hadrons v1 {EP1,EP2} as a function of pseudorapidity for 20–60% centrality.

Charged hadron v2 for the centrality bins 5 to 10% and in steps of 10% starting at 10, 20, 30, 40, 50, 60, and 70 up to 80% along with min. bias as a function of p_T.

More…

Azimuthal anisotropy in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 98 (2018) 014915, 2018.
Inspire Record 1641113 DOI 10.17182/hepdata.103057

The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|\eta|<1$. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $\eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $\langle p_x\rangle$, in Cu+Au collision also exhibits approximately linear dependence on $\eta$ with the intercept at about $\eta\approx-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the "tilted source" and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $\langle p_x\rangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $n\ge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.

33 data tables

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Cu+Au collisions.

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Au+Au collisions.

Conventional and fluctuation components of directed flow $v_1(\eta)$ and momentum shift $<p_x>/<p_T>(\eta)$ of charged particles in 10%-40% centrality for Cu+Au and Au+Au collisions.

More…

Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 222301, 2015.
Inspire Record 1373553 DOI 10.17182/hepdata.71502

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Azimuthal anisotropy of neutral pion production in Au+Au collisions at $\sqrt(s_NN)$ = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 142301, 2010.
Inspire Record 858845 DOI 10.17182/hepdata.141936

We have measured the azimuthal anisotropy of pi0's for 1 < pT < 18 GeV/c for Au+Au collisions at sqrt s_NN = 200 GeV. The observed anisotropy shows a gradual decrease in 3 < pT < 7 - 10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is under-predicted, up to at least 10 GeV/c, by current perturbative QCD (pQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and initial-geometry fluctuations is insufficient to account for this discrepancy. Calculations which implement a path length dependence steeper than what is implied by current pQCD energy-loss models, show reasonable agreement with the data.

8 data tables

$\pi^0$ $v_2$ using the reaction plane determined with MPC and RXN$_{in}$ combined as a function of $p_T$ for different centralities.

Ratios of $v_2$ measured separately using MPC and RXN$_{in}$ to combine results.

$v_2$ vs $N_{part}$ in two $p_T$ ranges and $R_{AA}$ vs $N_{part}$ in the same $p_T$ ranges.

More…