Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

6 data tables

Average charged particle multiplicity densities for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. The solid curves are the Toward region. The sparse dashed curves are the Away region. The dense dashed curves are the Transverse region.

Transverse region average charged particle densities for pT>0.2 GeV/c (open symbols) and pT>0.5 GeV/c (filled symbols). Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune.

Charged particle <pT> for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. Note the three curves overlap for the Transverse region calculations.

More…

Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 87 (2013) 044909, 2013.
Inspire Record 1203021 DOI 10.17182/hepdata.142074

The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.

1 data table

$\Upsilon$ invariant yields and cross sections of $p$+$p$ and $d$+Au collisions.


Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 82 (2010) 012004, 2010.
Inspire Record 842959 DOI 10.17182/hepdata.97119

We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

7 data tables

Unlike-sign pair invariant mass distribution with |y_ee| < 0.5.

Like-sign pair invariant mass distribution with |y_ee| < 0.5.

Background subtracted unlike-sign invariant mass distribution.

More…

Upsilon production in U+U collisions at 193 GeV with the STAR experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 064904, 2016.
Inspire Record 1482939 DOI 10.17182/hepdata.98624

We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

5 data tables

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

More…

W boson polarisation at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 585 (2004) 223-236, 2004.
Inspire Record 635790 DOI 10.17182/hepdata.49660

Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.

7 data tables

The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.

The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.

The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.

More…

Z gamma production in anti-p p collisions S**(1/2) = 1.8-TeV and limits on anomalous Z Z gamma and Z gamma gamma couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 57 (1998) R3817-R3821, 1998.
Inspire Record 465977 DOI 10.17182/hepdata.42169

We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.

1 data table

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.


rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

5 data tables

The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.

The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.

The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.

More…