High $p_T \gamma$ and $\pi^0$ Production, Inclusive and With a Recoil Hadronic Jet, in $p p$ Collisions at $\sqrt{s}=63$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Sov.J.Nucl.Phys. 51 (1990) 836-845, 1990.
Inspire Record 281284 DOI 10.17182/hepdata.48816

None

3 data tables

Errors are combined statistical and systematic.

Errors are combined statistical and systematic.

Errors are combined statistical and systematic.


Direct Photon Plus Away - Side Jet Production in $p p$ Collisions at $s^1$/2 = 63-{GeV} and a Determination of the Gluon Distribution

The Axial Field Spectrometer collaboration Åkesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Z.Phys.C 34 (1987) 293, 1987.
Inspire Record 235690 DOI 10.17182/hepdata.15800

We have determined the double inclusive cross-section for opposite-side high-pT photons and away-side jets withθγ≈θjet≈90° produced inpp collisions at the CERN Intersecting Storage Rings at\(\sqrt s= 63\) GeV. Under the assumption that these events arise predominantly from the QCD gluon Compton process we have calculated the gluon structure function in the range 0.15≦x≦0.30 at an average square of the four-momentum transfer of 40 GeV2/c2. The data favour a soft gluon distribution in the proton.

2 data tables

No description provided.

No description provided.


Direct Evidence for the Emergence of Jets in Events Triggered on Large Transverse Energy in $p p$ Collisions at $\sqrt{s}=63$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 118 (1982) 185-192, 1982.
Inspire Record 179517 DOI 10.17182/hepdata.30854

We present data obtained from a 1.7 sr hadron calorimeter, triggered on transverse energy, in pp collisions at s =63 GeV at the CERN-ISR. From the change in the distribution of energy in the calorimeter, we extract the cross section for two-constituent hard scattering for p T between 6 and 14 GeV at y = 0. The decrease of this jet cross section over this p T range is consistent with exp (− bp T ), with b = (1.02 ± 0.09) GeV −1 . The slope and normalization of the cross section agree well with a QCD motivated Monte Carlo model. The ratio between jet and single particle cross sections [ dσ JET / dp T )/( dσ π 0 / dp T )]| y = 0 changes from about 200 at 6 GeV to about 1500 at 14 GeV.

2 data tables

No description provided.

No description provided.