Measurement of the fraction of \Y1S originating from \chib1P decays in $pp$ collisions at $\sqrt{s} = 7\tev$

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adametz, A. ; et al.
JHEP 11 (2012) 031, 2012.
Inspire Record 1184177 DOI 10.17182/hepdata.72876

The production of \chib1P mesons in $pp$ collisions at a centre-of-mass energy of $7\tev$ is studied using $32\invpb$ of data collected with the \lhcb detector. The $\chib1P$ mesons are reconstructed in the decay mode $\chib1P \to \Y1S\g \to \mumu\g$. The fraction of \Y1S originating from \chib1P decays in the \Y1S transverse momentum range $6 < \pt^{\Y1S} < 15\gevc$ and rapidity range $2.0 < y^{\Y1S} < 4.5$ is measured to be $(20.7\pm 5.7\pm 2.1^{+2.7}_{-5.4})%$, where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \Y1S and \chib1P polarizations.

1 data table

Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T(\Upsilon(1S))$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons. The first uncertainty is statistical, the second is the systematic uncertainty ($10.21\%$) and the third uncertainty is due to the unknown $\Upsilon(1S)$ and $\chi_b(1P)$ polarizations ($ _{-26}^{+13}\%$). The second and third uncertainties are considerent constant over the measurement fiducial phase-space.


Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Measurement of Upsilon production in 7 TeV pp collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 052004, 2013.
Inspire Record 1204994 DOI 10.17182/hepdata.60219

Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.

12 data tables

Corrected cross-section measurements in the isotopic spin-alignment scenario. The second (sys) error is the uncertainty in the luminosity.

Fiducial Upsilon(1S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(1S) pT in the Upsilon(1S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.

Fiducial Upsilon(2S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(2S) pT in the Upsilon(2S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.

More…

Measurement of Upsilon production in pp collisions at {\surd}s = 7 TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 2025, 2012.
Inspire Record 1091071 DOI 10.17182/hepdata.58651

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -&gt; mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT &lt; 15 GeV/c and 2.0 &lt; y &lt; 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -&gt; Upsilon(1S) X) x B(Upsilon(1S)-&gt;mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -&gt; Upsilon(2S) X) x B(Upsilon(2S)-&gt;mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -&gt; Upsilon(3S) X) x B(Upsilon(3S)-&gt;mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.

17 data tables

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV/c and rapidity in the range 2.0-4.0. The second systematic (sys) error is due to the unknown polarisation of the three states.

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.0-2.5. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.5-3.0. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

More…

Upsilon dipion transitions at energies near the Upsilon(4S).

The CLEO collaboration Glenn, S. ; Kwon, Y. ; Lyon, Adam L. ; et al.
Phys.Rev.D 59 (1999) 052003, 1999.
Inspire Record 474676 DOI 10.17182/hepdata.47202

Using a data sample collected with the CLEO II detector at CESR, we have searched for dipion transitions between pairs of $\Upsilon$ resonances at energies near the $\Upsilon(4S)$. We obtain upper limits $B(\Upsilon(4S)\to \Upsilon(2S)\pi^+\pi^-) < 3.9 \times 10^{-4}$ and $B(\Upsilon(4S)\to \Upsilon(1S)\pi^+\pi^-) < 1.2 \times 10^{-4}$. We also observe the transitions $\Upsilon(3S)\to \Upsilon(1S)$, $\Upsilon(3S)\to \Upsilon(2S)$, and $\Upsilon(2S)\to \Upsilon(1S)$, from which we measure the cross-sections for the radiative processes $e^+e^- \to \Upsilon(3S)\gamma$ and $e^+e^- \to \Upsilon(2S)\gamma$.

1 data table

The cross sections are averaged from the ones obtained for E+ E- --> GAMMA UPSI(nS) < PI+ PI- UPSI(mS) < MU+ MU- > > and E+ E- --> GAMMA UPSI(nS) < PI+ PI-UPSI(mS) < E+ E- > > channels with n=2,3, m=1,2.


$\Sigma(c$)++ and $\Sigma(c$)0 Production From $e^+ e^-$ Annihilation in the $\Upsilon$ Energy Region

The CLEO collaboration Bowcock, T.J.V. ; Kinoshita, K. ; Pipkin, F.M. ; et al.
Phys.Rev.Lett. 62 (1989) 1240, 1989.
Inspire Record 25467 DOI 10.17182/hepdata.47269

We have observed Σc++ and Σc0 baryons in nonresonant e+e− interactions through their decays to Λc+π± using the CLEO detector. The mass difference M(Σc++)-M(Λc+) is measured to be 167.8±0.4±0.3 MeV; for M(Σc0)-M(Λc+) we find 167.9±0.5±0.3 MeV. Σc decay accounts for (18±3±5)% of Λc+ production.

2 data tables

The cross section ratio is multiplied by a factor of 1.5 to account for theunobserved SIGMA/C(2455)+.

No description provided.


Study of gluon versus quark fragmentation in Upsilon --> g g gamma and e+ e- --> q anti-q gamma events at s**(1/2) = 10-GeV.

The CLEO collaboration Alam, M.S. ; Athar, S.B. ; Ling, Z. ; et al.
Phys.Rev.D 56 (1997) 17-22, 1997.
Inspire Record 439530 DOI 10.17182/hepdata.47233

Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.

1 data table

No description provided.


Measurement of the direct photon spectrum in Upsilon(1S) decays.

The CLEO collaboration Nemati, B. ; Richichi, S.J. ; Ross, W.R. ; et al.
Phys.Rev.D 55 (1997) 5273-5281, 1997.
Inspire Record 425927 DOI 10.17182/hepdata.52340

Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: $R_{\gamma} \equiv \Gamma(\Upsilon(1S) \rightarrow \gamma gg)/\Gamma(\Upsilon(1S) \rightarrow ggg) = (2.75 \pm 0.04(stat.) \pm 0.15(syst.))%$. From this ratio, we have determined the QCD scale parameter $\Lambda_{\overline{MS}}$ (defined in the modified minimal subtraction scheme) to be $\Lambda_{\overline{MS}}= 233 \pm 11 \pm 59$ MeV, from which we determine a value for the strong coupling constant $\alpha_{s}(M_{\Upsilon(1S)}) = 0.163 \pm 0.002 \pm 0.014$, or $\alpha_{s}(M_{Z}) = 0.110 \pm 0.001 \pm 0.007$.

1 data table

The ALPHAS at MZ is extrapolation from M(UPSI).


Measurement of the inclusive B* cross-section above the Upsilon (4S)

The CLEO-II collaboration Akerib, D.S. ; Barish, B. ; Cowen, D.F. ; et al.
Phys.Rev.Lett. 67 (1991) 1692-1695, 1991.
Inspire Record 29927 DOI 10.17182/hepdata.19887

Using the CLEO II detector at the Cornell Electron Storage Ring, we have determined the inclusive B* cross section above the Υ(4S) resonance in the energy range from 10.61 to 10.70 GeV. We also report a new measurement of the energy of the B*→Bγ transition photon of 46.2±0.3±0.8 MeV.

2 data tables

Hadronic cross section above the continuum. The final state is an unknown mixture of B BBAR + B* BBAR + B B*BAR (+ B* B*BAR only at the highest energy).

Inclusive B* cross section.


A Measurement of the Direct Photon Spectrum From the $\Upsilon$ (1s)

The CLEO collaboration Csorna, S.E. ; Mestayer, M.D. ; Panvini, R.S. ; et al.
Phys.Rev.Lett. 56 (1986) 1222, 1986.
Inspire Record 220652 DOI 10.17182/hepdata.20260

We have observed decays of the ϒ(1S) into hadronic final states containing high-energy photons. These are interpreted as coming from the decay ϒ(1S)→γ+gluon+gluon. We compare the shape of the observed photon energy spectrum with several theoretical predictions and deduce the value of the strong-coupling constant αs and the QCD scale parameter ΛMS― (MS― denotes the modified minimal-subtraction scheme) associated with each prediction.

2 data tables

DATA TAKEN ON THE PEAK OF THE UPSI(9460).

DATA TAKEN ON THE PEAK OF THE UPSI(9460).


A Measurement of the Branching Fraction of the Decay $\Upsilon$ (1s) $\to \tau^+ \tau^-$

The CLEO collaboration Giles, R. ; Hassard, J. ; Hempstead, M. ; et al.
Phys.Rev.Lett. 50 (1983) 877, 1983.
Inspire Record 188803 DOI 10.17182/hepdata.20525

The branching fraction for the decay of the ϒ(1S) into τ paris has been measured to be (3.4±0.4±0.4)%. This result agrees with the previously measured branching ratio of the decay into muon pairs.

2 data tables

VISIBLE CROSS SECTIONS IN THE PEAK.

No description provided.


$\Lambda(c$) Production From $e^+ e^-$ Annihilation in the $\Upsilon$ Energy Region

The CLEO collaboration Bowcock, T.J.V. ; Giles, R.T. ; Hassard, J. ; et al.
Phys.Rev.Lett. 55 (1985) 923, 1985.
Inspire Record 214874 DOI 10.17182/hepdata.20302

We have observed Λc baryons in nonresonant e+e− annihilation at energies around s=10.5 GeV through their decay to Λπ+π+π−. We measure the branching fraction to be (2.8 ± 0.7 ± 1.1)%. The momentum spectrum of the Λc is similar to that of charmed mesons, providing a constraint on models of charmed-quark hadronization.

2 data tables

No description provided.

Data are extrapolated over whole x range using the 'Peterson' formula.


Inclusive Hadron Production in Upsilon Decays and in Nonresonant electron-Positron Annihilation at 10.49-GeV

The CLEO collaboration Behrends, S. ; Chadwick, K. ; Gentile, T. ; et al.
Phys.Rev.D 31 (1985) 2161, 1985.
Inspire Record 205668 DOI 10.17182/hepdata.23589

We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.

36 data tables

No description provided.

No description provided.

VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.

More…

Hyperon Production in $e^+ e^-$ Interactions in the $\Upsilon$ Region

The CLEO collaboration Alam, M.S. ; Csorna, S.E. ; Garren, L. ; et al.
Phys.Rev.Lett. 53 (1984) 24, 1984.
Inspire Record 200712 DOI 10.17182/hepdata.20410

We report measurements from the CLEO detector of the rate of Ξ and Λ production in e+e− interactions in the upsilon region. Hyperon production from the decay of the ϒ(1s) is compared with continuum e+e− data. The ratio of the production rates of Λ (and Λ―) to K0 (and K―0) on the ϒ(1s) is 0.21 ± 0.03, much larger than in the continuum, 0.07 ± 0.01. The ratios of the production rates of the Ξ and Λ are comparable, 0.10±0.02 [ϒ(1S)] and 0.07 ± 0.02 (continuum). We discuss some implications of the data for gluon and quark fragmentation models.

2 data tables

CONTINUUM IS ECM 10.38 TO 10.64 GEV.

No description provided.


CHARGED HADRON PRODUCTION IN THE UPSILON REGION

Avery, P. ; Bebek, C. ; Berkelman, Karl ; et al.
PRINT-83-0867, 1983.
Inspire Record 192220 DOI 10.17182/hepdata.12222

None

3 data tables

No description provided.

NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291).

NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291). FOR UPSI(4S) PROTON PRODUCTION SEE ALAM 83, PRL 51/1143/83, RED = 1271.


phi MESON PRODUCTION AT THE UPSILON RESONANCES AND THE NEARBY CONTINUUM

Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
PRINT-83-0865, 1983.
Inspire Record 192222 DOI 10.17182/hepdata.11815

None

1 data table

No description provided.


PHOTON MULTIPLICITY AND ENERGY FRACTION OF THE UPSILON (4S) AND NEAR CONTINUUM

Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
PRINT-83-0720, 1983.
Inspire Record 191581 DOI 10.17182/hepdata.12129

None

2 data tables

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM R.A. PERCHANOK, PHD THESIS, CORNELL UNIVERSITY (1983).

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM G.J. RUCINSKI, PHD THESIS, CORNELL UNIVERSITY (1983).


LAMBDA AND K0 PRODUCTION IN THE UPSILON REGION

Green, J. ; Hicks, R.G. ; Sannes, F. ; et al.
PRINT-83-0866, 1983.
Inspire Record 192219 DOI 10.17182/hepdata.12780

None

5 data tables

NUMBER OF K0S PER EVENT IN THE UPSILON REGION.

NUMBER OF ANTI(LAMBDA)S PER EVENT IN THE UPSILON REGION. FOR UPSI(4S) RESULTS SEE 'A'.

DSIG/DP DISTRIBUTIONS FOR K0 AND (ANTI) LAMBDA PRODUCTION AT THE UPSILON RESONANCES.

More…

The Total Cross-section for Electron - Positron Annihilation Into Hadron Final States in the $\Upsilon$ Energy Region

The CLEO collaboration Giles, R. ; Hassard, J. ; Hempstead, M. ; et al.
Phys.Rev.D 29 (1984) 1285, 1984.
Inspire Record 193577 DOI 10.17182/hepdata.23768

We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.

1 data table

No description provided.


Limits on $J/\psi$ and $\Upsilon$ Production in $e^+ e^-$ Interactions at $\sqrt{s}=29$-{GeV}

Matteuzzi, C. ; Abrams, G.S. ; Amidei, D. ; et al.
Phys.Lett.B 129 (1983) 141-144, 1983.
Inspire Record 189580 DOI 10.17182/hepdata.30662

A search has been made for the inclusive production of J ψ (3.1) and ϒ (9.4) mesons in e + e − interactions at 29 GeV, via their decay into two leptons. No signal is observed in the J ψ region, nor in the ϒ region. The limits on the cross sections are σ ( e + e − → ψX ) < 4.4 × 10 −36 cm 2 , and σ ( e + e − → ϒX ) < 4.7 × 10 −36 cm 2 . The same data yield limits on the branching ratios for the b quark BR ( b → ψX ) < 4.9% and BR ( b → ℓ + ℓ − X ) < 0.8%.

2 data tables

No description provided.

No description provided.


Observation of a Fourth Upsilon State in e+ e- Annihilations

The CLEO collaboration Andrews, D. ; Berkelman, Karl ; Cabenda, R. ; et al.
Phys.Rev.Lett. 45 (1980) 219, 1980.
Inspire Record 153182 DOI 10.17182/hepdata.20674

A fourth state in the upsilon energy region has been seen in e+e− collisions at the Cornell Electron Storage Ring. A resonance is observed with a mass 1112±5 MeV above the lowest upsilon state. The 9.6-MeV rms width is greater than the 4.6-MeV energy resolution of the e+e− beams. The observed characteristics of the new state make it a likely candidate for the 4S3 state of the bb¯ system, lying above the threshold for the production of B mesons.

1 data table

NOT CORRECTED FOR TAU HEAVY LEPTON PRODUCTION NOR TWO-PHOTON COLLISIONS.


Observation of Three Upsilon States

The CLEO collaboration Andrews, D. ; Berkelman, Karl ; Billing, M. ; et al.
Phys.Rev.Lett. 44 (1980) 1108, 1980.
Inspire Record 152393 DOI 10.17182/hepdata.20733

Three narrow resonances have been observed in e+e− annihilation into hadrons at total energies between 9.4 and 10.4 GeV. Measurements of mass spacing and ratios of lepton pair widths support the interpretation of these "ϒ" states as the lowest triplet-S levels of the bb¯ quark-antiquark system.

1 data table

No description provided.