Freeze-out Dynamics via Charged Kaon Femtoscopy in sqrt(sNN)=200 GeV Central Au+Au Collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 034906, 2013.
Inspire Record 1219133 DOI 10.17182/hepdata.97126

We present measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from sqrt(sNN)=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass m_T over the interval of 0.55<=m_T<=1.15 GeV/c^2. While the kaon radii are adequately described by the m_T-scaling in the outward and sideward directions, in the longitudinal direction the lowest m_T value exceeds the expectations from a pure hydrodynamical model prediction.

4 data tables

Independent correlation moments Rl(q) for orders l = 0,2,4 for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV

Kaon correlation function profiles for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV

Kaon source function profiles extracted from the data

More…

Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 064904, 2010.
Inspire Record 840766 DOI 10.17182/hepdata.99155

We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi^0 -> gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.

9 data tables

Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The solid lines correspond to NLO pQCD calculations. The measured $\pi^0$ cross sections were not corrected for feed-down contributions $\eta$ -> 3$\pi^0$, $\eta$ -> $\pi^+\pi^-\pi^0$, and $K_S^0$ -> $\pi^0\pi^0$, which were expected to be negligible. Normalization uncertainties of 11.7% for p+p and 5.3% for d+Au are not shown.

The $\eta/\pi^0$ ratio measured in p + p collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.

The $\eta/\pi^0$ ratio measured in d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.

More…

Scaling Properties of Hyperon Production in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 062301, 2007.
Inspire Record 718755 DOI 10.17182/hepdata.98928

We present the scaling properties of Lambda, Xi, Omega and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at sqrt(s_NN) = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma_s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, R_CP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range 2.0 < p_T < 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.

6 data tables

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.

More…

Identified baryon and meson distributions at large transverse momenta from Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 152301, 2006.
Inspire Record 718231 DOI 10.17182/hepdata.98860

Transverse momentum spectra of $\pi^{\pm}$, $p$ and $\bar{p}$ up to 12 GeV/c at mid-rapidity in centrality selected Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV are presented. In central Au+Au collisions, both $\pi^{\pm}$ and $p(\bar{p})$ show significant suppression with respect to binary scaling at $p_T > $ 4 GeV/c. Protons and anti-protons are less suppressed than $\pi^{\pm}$, in the range 1.5 $< p_{T} <$6 GeV/c. The $\pi^-/\pi^+$ and $\bar{p}/p$ ratios show at most a weak $p_T$ dependence and no significant centrality dependence. The $p/\pi$ ratios in central Au+Au collisions approach the values in p+p and d+Au collisions at $p_T >$ 5 GeV/c. The results at high $p_T$ indicate that the partonic sources of $\pi^{\pm}$, $p$ and $\bar{p}$ have similar energy loss when traversing the nuclear medium.

8 data tables

Centrality dependence of mid-rapidity ($|y|$ $<$ 0.5) $\pi^{\pm}$, p and $\bar{p}$ in invariant yields versus $p_{T}$ from 200 GeV Au+Au collisions.

Centrality dependence of mid-rapidity ($|y|$ $<$ 0.5) $\pi^{\pm}$, p and $\bar{p}$ in invariant yields versus $p_{T}$ from 200 GeV Au+Au collisions.

Centrality dependence of mid-rapidity ($|y|$ $<$ 0.5) $\pi^{\pm}$, p and $\bar{p}$ in invariant yields versus $p_{T}$ from 200 GeV Au+Au collisions.

More…

Forward neutral pion production in p+p and d+Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 152302, 2006.
Inspire Record 710186 DOI 10.17182/hepdata.98968

Measurements of the production of forward pi0 mesons from p+p and d+Au collisions at sqrt(s_NN)=200 GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as eta increases, decreasing to ~30% of the p+p yield at <eta>=4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward pi0 with charged hadrons at eta~0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei.

7 data tables

Inclusive $\pi^{0}$ cross section for p+p collisions versus the leading $\pi^{0}$ energy ($E_{\pi}$) averaged over 5 GeV bins at fixed pseudorapidity ($\eta$). The error bars combine statistical and point-to-point systematic errors. The curves are NLO pQCD calculations using two sets of fragmentation functions (FF).

Inclusive $\pi^{0}$ cross section per binary collision for d+Au collisions, as in Fig. 1. The curves are calculations described in the text. (Inset) Diphoton invariant mass spectrum for data (stars), normalized to simulation (histogram).

Nuclear modification factor ($R_{dAu}$) for minimum-bias d+Au collisions versus transverse momentum ($p_{T}$). The solid circles are for $\pi^{0}$ mesons. The open circles and boxes are for negative hadrons [10]. The error bars are statistical, while the shaded boxes are point-to-point systematic errors. (Inset) $R_{dAu}$ for $\pi^{0}$ mesons with the ratio of curves in Figs. 2 and 1.

More…

Strange anti-particle to particle ratios at mid-rapidity in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adams, John ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Lett.B 567 (2003) 167-174, 2003.
Inspire Record 602867 DOI 10.17182/hepdata.98924

Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71 +/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05 (sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092 +/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au collisions using the STAR detector. The ratios indicate that a fraction of the net-baryon number from the initial system is present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in the framework of simple quark-counting and thermal models.

5 data tables

Invariant mass distributions for $\Lambda$ and Anti-$\Lambda$

Invariant mass distributions for $\Xi$ and Anti-$\Xi$

Invariant mass distributions for $\Omega$ and Anti-$\Omega$

More…

Observation of pi^+pi^-pi^+pi^- Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044901, 2010.
Inspire Record 838875 DOI 10.17182/hepdata.98963

We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.

6 data tables

Distribution of the $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ transverse momentum $p_{T} = |\sum_{i=1}^{4}\overrightarrow{p}_{T,i}|$􏰇: The filled circles are the measured 􏰇points with the statistical errors. The hatched filled histogram shows the expected distribution from simulation of coherent photoproduction (cf. section III). The strong enhancement at low transverse momenta is due to coherently produced $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$. This unique signature is used in the event selection which requires $p_{T}$ < 150 MeV/c (arrow). The remaining background is estimated from +2 or −2 charged four-prong combinations, by normalizing (factor = 1.186 $\pm$ 0.054) their $p_{T}$ distribution (gray filled histogram) to that of the neutral four-prongs in the region of $p_{T}$ > 250 MeV/c (vertical line) yielding the unfilled histogram (see section IV).

Invariant Mass distribution of two-pion subsystems: The filled circles show the measured $\pi^{+}\pi^{-}$ invariant mass spectrum for the selected four-prong sample (four entries per event) with statistical errors. The open circles represent the mass spectrum of the like-sign pion pairs (two entries per event). The unlike-sign mass distribution exhibits an enhancement with respect to the like-sign pairs in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

Invariant Mass distribution of two-pion subsystems: The open circles show the measured invariant mass spectrum of the lightest $\pi^{+}\pi^{-}$ pair in the event with the bars indicating the statistical errors. The filled circles represent the invariant mass distribution of the $\pi^{+}\pi^{-}$ that is recoiling against the lightest pair. The spectrum exhibits a clear peak in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

More…

rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

5 data tables

The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.

The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.

The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.

More…

Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

11 data tables

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of collisions in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to number of collisions, in the PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{coll}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{coll}$ calculations.

More…

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

5 data tables

The elliptic flow, $v_{2}$($p_{T}$), for the $\phi$-meson as a function of centrality. The vertical error bars represent the statistical errors while the shaded bands represent the systematic uncertainties. For clarity, data points are shifted slightly.

(color online) Transverse momentum distributions of $\phi$-mesons from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, distributions for different centralities are scaled by factors of ten. Dashed lines represent the exponential fits to the distributions and the dotted lines are Levy function fits. Error bars represent statistical errors only.

(color online) The $N(\Omega)/N(\phi)$ ratio vs. $p_{T}$ for three centrality bins in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions. The solid and dashed lines represent recombination model predictions for central collisions [21] for total and thermal contributions, respectively.

More…