A measurement of the spin correlation parameter C NN (θ) in n-p scattering at 181 MeV

Sowinski, J. ; Byrd, R.C. ; Jacobs, W.W. ; et al.
Phys.Lett.B 199 (1987) 341-345, 1987.
Inspire Record 1392688 DOI 10.17182/hepdata.30055

The spin correlation parameter C NN has been measured for n-p elastic scattering at 181 MeV. A comparison with predictions from various phase shift sets and potential models reveals sizeable deviations from the for the data Paris potential and Saclay phase shifts. For the Paris potential the deviations are directly related to an overprediction of the 3 D 2 phase shift parameter.

1 data table

Numerical values of data supplied by J. Sowinski.


Measurement of the triple scattering parameter $R_{pn}$ at C.M.S. angle of 70°, and phase shift analysis at 630 MeV

Kazarinov, Yu.M. ; Lehar, F. ; Pisarev, A.F. ; et al.
Sov.J.Nucl.Phys. 5 (1967) 97-100, 1967.
Inspire Record 1392562 DOI 10.17182/hepdata.17309

None

2 data tables

DATA FOR DEUTERIUM.

DATA FOR CARBON.


Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.


Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

The pp2pp collaboration Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 647 (2007) 98-103, 2007.
Inspire Record 729168 DOI 10.17182/hepdata.31499

We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.

3 data tables

Double spin asymmetries.

Double spin asymmetries.

T dependence of the double spin asymmetry ASS3 with statistical errors only.


Polarization transfer in proton Compton scattering at high momentum transfer.

The Jefferson Lab Hall A collaboration Hamilton, D.J. ; Mamyan, V.H. ; Aniol, K.A. ; et al.
Phys.Rev.Lett. 94 (2005) 242001, 2005.
Inspire Record 660894 DOI 10.17182/hepdata.19389

Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

1 data table

Polarization transfer parameters.


Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


Measurement of spin correlation parameters A(NN), A(SS), and A(SL) at 2.1-GeV in proton proton elastic scattering.

Bauer, F. ; Bisplinghoff, J. ; Busser, K. ; et al.
Phys.Rev.Lett. 90 (2003) 142301, 2003.
Inspire Record 594512 DOI 10.17182/hepdata.31721

At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.

1 data table

Spin correlation parameters.


Complete set of precise deuteron analyzing powers at intermediate energies: Comparison with modern nuclear force predictions

Sekiguchi, K. ; Sakai, H. ; Witaa, H. ; et al.
Phys.Rev.C 65 (2002) 034003, 2002.
Inspire Record 583095 DOI 10.17182/hepdata.25427

Precise measurements of deuteron vector and tensor analyzing powers Ayd, Axx, Ayy, and Axz in d−p elastic scattering were performed via 1H(d→,d)p and 1H(d→,p)d reactions at three incoming deuteron energies of Edlab=140, 200, and 270 MeV. A wide range of center-of-mass angles from ≈10° to 180° was covered. The cross section was measured at 140 and 270 MeV at the same angles. These high precision data were compared with theoretical predictions based on exact solutions of three-nucleon Faddeev equations and modern nucleon-nucleon potentials combined with three-nucleon forces. Three-body interactions representing a wide range of present day models have been used: the Tucson-Melbourne 2π-exchange model, a modification thereof closer to chiral symmetry, the Urbana IX model, and a phenomenological spin-orbit ansatz. Large three-nucleon force effects are predicted, especially at the two higher energies. However, only some of them, predominantly dσ/dΩ and Ayd, are supported by the present data. For tensor analyzing powers the predicted effects are in drastic conflict to the data, indicating defects of the present day three-nucleon force models.

8 data tables

Angular distribution for DEUT P elastic scattering at EKIN of 140 MeV with the SMART spectrograph.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the D-room polarimeter.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the SMART spectrograph.

More…

Angular dependence of the pp elastic scattering spin correlation parameter Ann-00 between 0.8 and 2.8 GeV. II. Results for higher energies

Allgower, C.E. ; Ball, J. ; Beddo, M.E. ; et al.
Phys.Rev.C 64 (2001) 034003, 2001.
Inspire Record 561777 DOI 10.17182/hepdata.25291

Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=(N,N;0,0)=CNN=ANN. The c.m. angular range is typically 60°-100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed. Comparisons are made to phase shift analysis and theoretical model predictions of this spin observable.

20 data tables

Measured values of CNN at EKIN 795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.032.

Measured values of CNN at EKIN 1975 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.052.

Measured values of CNN at EKIN 2035 Mev (from run period III).. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.051.

More…

Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…