We measure for the first time the differential photoproduction cross section $d\sigma/dt$ of the $a_2(1320)$ meson at an average photon beam energy of 8.5~GeV, using data with an integrated luminosity of 104~pb$^{-1}$ collected by the GlueX experiment. We fully reconstruct the $\gamma p \to \eta\pi^0 p$ reaction and perform a partial-wave analysis in the $a_2(1320)$ mass region with amplitudes that incorporate the linear polarization of the beam. This allows us to separate for the first time the contributions of natural- and unnatural-parity exchanges. These measurements provide novel information about the photoproduction mechanism, which is critical for the search for spin-exotic states.
$a_2(1320)$ parity asymmetry, $P_{\sigma}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section split into different reflectivity components, $\frac{d\sigma^+}{dt}$ and $\frac{d\sigma^-}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section in the m=-1 projection split into different reflectivity components, $\frac{d\sigma^+_{-1}}{dt}$ and $\frac{d\sigma^-_{-1}}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases towards larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2<p_{\mathrm{T}}<8$ GeV/$c$), and approaches the vicinity of unity at higher $p_{\mathrm{T}}$. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator.
Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Measurements of light-by-light scattering (LbL, $\gamma\gamma\to\gamma\gamma$) and the Breit--Wheeler process (BW, $\gamma\gamma$$\to$$\mathrm{e^+e^-}$) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb$^{-1}$, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively produced $\gamma\gamma$ or $\mathrm{e^+e^-}$ pair with invariant masses $m^{\gamma\gamma,\mathrm{ee}}$$>$ 5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section, $\sigma_\text{fid}$($\gamma\gamma$$\to$$\mathrm{e^+e^-}$) = 263.5 $\pm$ 1.8 (stat) $\pm$ 17.8 (syst) $\mu$b, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discriminating between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 $\pm$ 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section, $\sigma_\text{fid} (\gamma\gamma\to\gamma\gamma)$ = 107 $\pm$ 24 (stat) $\pm$ 13 (syst) nb, is in agreement with next-to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5-100 GeV, including the most stringent limits to date in the range of 5-10 GeV.
Probability for different neutron multiplicity classes (0n, 1n, and Xn with X $\ge$1) measured on each ZDC side for the exclusive $e^{+}e^{-}$ events passing the fiducial phase space of Table 1. The measured ratios are compared with SUPERCHIC 4.2, STARLIGHT 3.13, and gamma-UPC 1.6 predictions.
Differential cross sections for exclusive dielectron production, in the fiducial phase space of Table 1, as functions of the pair $p_T$. Data are compared with SUPERCHIC + FSR(PHOTOS++), STARLIGHT + FSR(PY8), and gamma-UPC + FSR(PY8) predictions.
Differential cross sections for exclusive dielectron production, in the fiducial phase space of Table 1, as functions of the pair rapidity. Data are compared with SUPERCHIC + FSR(PHOTOS++), STARLIGHT + FSR(PY8), and gamma-UPC + FSR(PY8) predictions.
We report a high-statistics measurement of the branching fraction for tau^- -> pi^- pi^0 nu_tau and the invariant mass spectrum of the produced pi^- pi^0 system using 72.2 fb^-1 of data recorded with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider. The branching fraction obtained is (25.12 +/- 0.01 +/- 0.38)%, where the first error is statistical and the second is systematic. The unfolded pi^- pi^0 mass spectrum is used to determine resonance parameters for the rho(770), rho'(1450), and rho''(1700) mesons. We also use this spectrum to estimate the hadronic (2pi) contribution to the anomalous magnetic moment of the muon (a_{mu}^{pipi}). Our result for a_{mu}^{pipi} integrated over the mass range sqrt{s} = 2m_{pi} - 1.8 GeV/c^2 is a_{mu}^{pipi} = (519.1 +/- 1.5 (exp) +/- 2.6 (Br) +/- 2.5 (isospin)) x 10^{-10}, where the first error is due to the experimental uncertainties, the second is due to the uncertainties in the branching fractions and the third is due to the uncertainties in the isospin-violating corrections.
Fully corrected $s= M^2_{\pi\pi^{2}}$ distribution, 1/N dn/ds, for $\tau^{-}\to \pi^{-}\pi^0 \nu_{\tau}$, from threshold to the kinematical limit s=3.15 GeV$^2$. The error bars include uncertainties both from statistical and systematic contributions.
Statistic covariance matrix for the 1/N dn/ds distribution in the $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ decay. A special treatment is needed to take an inverse of this matrix. Please contact me (Hisaki Hayashii) if it is needed.
Systematic covariance matrix for the 1/N dn/ds sidtribution in the $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ decay.
The measurement of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields as a function of the charged-particle multiplicity density, $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, using the ALICE experiment at the LHC, is reported in pp collisions at $\sqrt{s} =$ 13 TeV. The $\Upsilon$ meson yields are measured at forward rapidity ($2.5 < y < 4$) in the dimuon decay channel, whereas the charged-particle multiplicity is defined at central rapidity ($|\eta| < 1$). Both quantities are divided by their average value in minimum bias events to compute the self-normalized quantities. The increase of the self-normalized $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields is found to be compatible with a linear scaling with the self-normalized $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, within the uncertainties. The self-normalized yield ratios of excited-to-ground $\Upsilon$ states are compatible with unity within uncertainties. Similarly, the measured double ratio of the self-normalized $\Upsilon$(1S) to the self-normalized J/$\psi$ yields, both measured at forward rapidity, is compatible with unity for self-normalized charged-particle multiplicities beyond one. The measurements are compared with theoretical predictions incorporating initial or final state effects.
Self-normalized Upsilon(1S) yield as a function of the self-normalized charged-particle multiplicity.
Self-normalized Upsilon(2S) yield as a function of the self-normalized charged-particle multiplicity.
Self-normalized Upsilon(3S) yield as a function of the self-normalized charged-particle multiplicity.
A pioneering machine-learning-based flavor-tagging algorithm combining same-side and opposite-side tagging is used to obtain the equivalent of 27$\,$000 tagged B$^0_\mathrm{s}$$\to$ J/$\psi\, \phi$(1020) decays from pp collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 96.5 fb$^{-1}$. A time- and flavor-dependent angular analysis of the $\mu^+\mu^-$K$^+$K$^-$ final state is used to measure parameters of the $\mathrm{B}^0_\mathrm{s}$-$\overline{\mathrm{B}}^0_\mathrm{s}$ system. The weak phase is measured to be $\phi_\mathrm{s}$ = $-$73 $\pm$ 23 (stat) $\pm$ 7 (syst) mrad, which, combined with a $\sqrt{s}$ = 8 TeV CMS result, gives $\phi_\mathrm{s}$ = $-$74 $\pm$ 23 mrad. This value differs from zero by 3.2 standard deviations, providing evidence for $CP$ violation in B$^0_\mathrm{s}$$\to$ J/$\psi\,\phi$(1020) decays. All measured physics parameters are found to agree with standard model predictions where available.
Measured values and uncertainties of the main parameters of interest, as obtained from the analysis to data at 13 TeV.
Values and uncertainties of the physics parameters obtained from the combination of the CMS 8 TeV and 13 TeV results using the BLUE method. The uncertainty includes both statistical and systematic sources.
Matrix of the correlations of the statistical uncertainties between pairs of physics parameters, as obtained from the analysis to data at 13 TeV.
The first search for a heavy neutral spin-1 gauge boson (Z') with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at $\sqrt{s}$ = 13 TeV, collected from 2016 to 2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z' boson and its branching fraction to $\tau\tau$ or WW. The presence of a Z' boson decaying to $\tau^+\tau^-$ (W$^+$W$^-$) is excluded for masses up to 2.45 (1.60) TeV, depending on the Z' boson coupling to SM weak bosons, and assuming a Z' $\to$$\tau^+\tau^-$ (W$^+$W$^-$) branching fraction of 50%.
Cutflow for VBF Z' to tautau in ditau 2016 channel for different signal scenarios
Cutflow for VBF Z' to tautau in ditau 2017 channel for different signal scenarios
Cutflow for VBF Z' to tautau in ditau 2018 channel for different signal scenarios
In the standard model of particle physics, the masses of the carriers of the weak interaction, the W and Z bosons, are uniquely related. Physics beyond the standard model could change this relationship through the effects of quantum loops of virtual particles, thus making it of great importance to measure these masses with the highest possible precision. Although the mass of the Z boson is known to the remarkable precision of 22 parts per million (2.0 MeV), the W boson mass is known much less precisely, given the difficulty of the measurement. A global fit to electroweak data, used to predict the W boson mass in the standard model, yields an uncertainty of 6 MeV. Reaching a comparable experimental precision would be a sensitive and fundamental test of the standard model. Furthermore, a precision measurement of the W boson mass performed by the CDF Collaboration at the Fermilab Tevatron has challenged the standard model by significantly disagreeing with the prediction of the global electroweak fit and the average of other $m_\mathrm{W}$ measurements. We report the first W boson mass measurement by the CMS Collaboration at the CERN LHC, based on a data sample collected in 2016 at the proton-proton collision energy of 13 TeV. The W boson mass is measured using a large sample of W$\to\mu\nu$ events via a highly granular binned maximum likelihood fit to the kinematic properties of the muons produced in the W$^{+}$ and W$^{-}$ boson decays. The significant in situ constraints of theoretical inputs and their corresponding uncertainties, together with an accurate determination of the experimental effects, lead to a precise W boson mass measurement, $m_\mathrm{W} =$ 80$\,$360.2 $\pm$ 9.9 MeV, in agreement with the standard model prediction.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W boson mass fit, sorted by the absolute value of the nominal impact.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W boson mass fit (charge difference), sorted by the absolute value of the nominal impact.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W-like Z boson mass fit, sorted by the absolute value of the nominal impact.
The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_{_\text{NN}}}$ = 8.16 TeV in 2016. The event centrality, which reflects the $p$+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, $R_\mathrm{CP}$, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The $R_\mathrm{CP}$ shows a scaling with the Bjorken-$x$ of the parton originating from the proton, $x_p$, while no such trend is observed as a function of $x_\mathrm{Pb}$. This analysis provides unique input to understanding the role of small proton spatial configurations in $p$+Pb collisions by covering parton momentum fractions from the valence region down to $x_p \sim 10^{-3}$ and $x_\mathrm{Pb}\sim 4\cdot10^{-4}$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-3.0 < y_b < -2.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $1.0 < y^* < 2.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
A search for long-lived heavy neutral leptons (HNLs) using proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC is presented. Events are selected with a charged lepton originating from the primary vertex associated with the proton-proton interaction, as well as a second charged lepton and a hadronic jet associated with a secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No excess of events above the standard model expectation is observed. Exclusion limits at 95% confidence level are evaluated for HNLs that mix with electron and/or muon neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square mixing parameter values reaching as low as 2 $\times$ 10$^{-7}$. For masses above 11 GeV, the presented limits exceed all previous results in the semileptonic decay channel, and for some of the considered scenarios are the strongest to date.
The 95% CL limits on $|V_{Ne}|^2$ as a function of the HNL mass for a Majorana HNL. Values of $-1$ indicate that no limit is available for the mass point.
The 95% CL limits on $|V_{N\mu}|^2$ as a function of the HNL mass for a Majorana HNL. Values of $-1$ indicate that no limit is available for the mass point.
The 95% CL limits on mixed coupling as a function of the HNL mass for a Majorana HNL. Values of $-1$ indicate that no limit is available for the mass point.