Version 2
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 726 (2013) 88-119, 2013.
Inspire Record 1241574 DOI 10.17182/hepdata.61748

Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, $H\rightarrow\gamma\gamma$, $H\rightarrow ZZ^{*}\rightarrow 4 \ell$ and $H\rightarrow W W \rightarrow \ell\nu\ell\nu$. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25 fb$^{-1}$. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.

3 data tables

-2 log Likelihood in the $(\mu^f_{{\mathrm{{ggF}}+ttH}}, \mu^f_{{\mathrm{{VBF}}+VH}})$ plane for the $f=H\to \gamma\gamma$ channel and a Higgs boson mass $m_H = 125.5$ GeV. The original plain-text and ROOT files from <a href="https://doi.org/10.7484/inspirehep.data.a78c.hk44">10.7484/inspirehep.data.a78c.hk44</a> are accessible by clicking "Resources".

-2 log Likelihood in the $(\mu^f_{{\mathrm{{ggF}}+ttH}}, \mu^f_{{\mathrm{{VBF}}+VH}})$ plane for the $f=H\to ZZ^*\to 4\ell$ channel and a Higgs boson mass $m_H = 125.5$ GeV. The sharp lower edge is due to the small number of events in this channel and the requirement of a positive pdf. The original plain-text and ROOT files from <a href="https://doi.org/10.7484/inspirehep.data.rf5p.6m3k">10.7484/inspirehep.data.rf5p.6m3k</a> are accessible by clicking "Resources".

-2 log Likelihood in the $(\mu^f_{{\mathrm{{ggF}}+ttH}}, \mu^f_{{\mathrm{{VBF}}+VH}})$ plane for the $f=H\to WW^*\to\ell\nu\ell\nu$ channel and a Higgs boson mass $m_H = 125.5$ GeV. The original plain-text and ROOT files from <a href="https://doi.org/10.7484/inspirehep.data.26b4.ty5f">10.7484/inspirehep.data.26b4.ty5f</a> are accessible by clicking "Resources".


Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

57 data tables

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Search for two Higgs bosons in final states containing two photons and two bottom quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052012, 2016.
Inspire Record 1431986 DOI 10.17182/hepdata.77003

A search is presented for the production of two Higgs bosons in final states containing two photons and two bottom quarks. Both resonant and nonresonant hypotheses are investigated. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV collected with the CMS detector. Good agreement is observed between data and predictions of the standard model (SM). Upper limits are set at 95% confidence level on the production cross section of new particles and compared to the prediction for the existence of a warped extra dimension. When the decay to two Higgs bosons is kinematically allowed, assuming a mass scale Lambda[R] = 1 TeV for the model, the data exclude a radion scalar at masses below 980 GeV. The first Kaluza-Klein excitation mode of the graviton in the RS1 Randall-Sundrum model is excluded for masses between 325 and 450 GeV. An upper limit of 0.71 pb is set on the nonresonant two-Higgs-boson cross section in the SM-like hypothesis. Limits are also derived on nonresonant production assuming anomalous Higgs boson couplings.

3 data tables

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown. Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH) obtained through a combination of the two event categories. The limits for mX = 400 GeV are shown for both Low mass and High mass signal extraction methods.

Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH->gamma gamma b b ) for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions.

Signal efficiencies in the four different signal regions for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions. The four signal regions are made in b-tag and m_HH categries, being those: "Low-purity, High-mass" (LPHM), "Low-purity, Low-mass" (LPLM), "High-purity, High-mass" (HPHM) and "High-purity, Low-mass" (HPLM).


Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

22 data tables

Measured total fiducial cross section in fb.

Measured fiducial cross section in fb as a function of Njet. Jet PT>25 GeV for |eta|<2.4 and PT>30 GeV for 2.4<|eta|<4.5.

Measured fiducial cross section in fb/GeV as a function of pTH.

More…

Search for a Higgs boson decaying into gamma* gamma to ll gamma with low dilepton mass in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 341-362, 2016.
Inspire Record 1382587 DOI 10.17182/hepdata.73712

A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.

4 data tables

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

More…

Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ Decay Channels at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 115 (2015) 091801, 2015.
Inspire Record 1364361 DOI 10.17182/hepdata.57334

Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}$. The measurements are compared to state-of-the-art predictions.

17 data tables

Measured cross section in bins of $p_{\rm{T}}^{\rm{H}}$.

Measured cross section in bins of $|y^{\rm{H}}|$.

Measured cross section in bins of $N_{\rm{jets}}$.

More…

Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2015) 071, 2015.
Inspire Record 1380177 DOI 10.17182/hepdata.70722

A search for neutral Higgs bosons decaying into a b-bbar quark pair and produced in association with at least one additional b quark is presented. This signature is sensitive to the Higgs sector of the minimal supersymmetric standard model (MSSM) with large values of the parameter tan(beta). The analysis is based on data from proton-proton collisions at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The results are combined with a previous analysis based on 7 TeV data. No signal is observed. Stringent upper limits on the cross section times branching fraction are derived for Higgs bosons with masses up to 900 GeV, and the results are interpreted within different MSSM benchmark scenarios, m[h,max], m[h,mod+], m[h,mod-], light-stau and light-stop. Observed 95% confidence level upper limits on tan(beta), ranging from 14 to 50, are obtained in the m[h,mod+] benchmark scenario.

3 data tables

Expected and observed 95% CL upper limits on sigma(pp->b+ H(MSSM)+X) * B(H(MSSM) -> bb) in pb as a function of m(H(MSSM)), where H(MSSM) denotes a generic Higgs-like state, as obtained from the 8 TeV data.

Expected and observed 95% CL upper limits on tan(beta) as a function of mA in the mh-max benchmark scenario for mu=+200 GeV, obtained from a combination of the 7 and 8 TeV data.

Expected and observed 95% CL upper limits on tan(beta) as a function of mA in the mh-mod+ benchmark scenario for mu=+200 GeV, obtained from a combination of the 7 and 8 TeV data.


Search for neutral MSSM Higgs bosons decaying to $\mu^{+} \mu^{-}$ in pp collisions at $ \sqrt{s} =$ 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 752 (2016) 221-246, 2016.
Inspire Record 1386854 DOI 10.17182/hepdata.70526

A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for mu+ mu- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 inverse femtobarns, respectively. The search is sensitive to Higgs bosons produced through the gluon fusion process or in association with a bb quark pair. No statistically significant excess is observed in the mu+ mu- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan(beta) as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production. They are the most stringent limits obtained to date in this channel.

3 data tables

The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.


Measurement of Higgs boson production in the diphoton decay channel in $pp$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112015, 2014.
Inspire Record 1312978 DOI 10.17182/hepdata.69473

A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\mu = 1.17 \pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\mu_{\mathrm{ggF}} = 1.32 \pm 0.38$, $\mu_{\mathrm{VBF}} = 0.8 \pm 0.7$, $\mu_{{WH}} = 1.0 \pm 1.6 $, $\mu_{{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\mu_{{t\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

3 data tables

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in the individual analysis categories, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data. The VH dilepton category is not shown because with only two events in the combined sample, the fit results are not meaningful.

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in groups of categories sensitive to individual production modes, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data.

Measured signal strengths, for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma, of the different Higgs boson production modes and the combined signal strength mu obtained with the combination of the 7 TeV and 8 TeV data.


Search for charged Higgs bosons decaying via $H^{\pm} \rightarrow \tau^{\pm}\nu$ in fully hadronic final states using $pp$ collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 03 (2015) 088, 2015.
Inspire Record 1335266 DOI 10.17182/hepdata.68153

The results of a search for charged Higgs bosons decaying to a $\tau$ lepton and a neutrino, $H^{\pm} \rightarrow \tau^{\pm} \nu$, are presented. The analysis is based on 19.5 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Charged Higgs bosons are searched for in events consistent with top-quark pair production or in associated production with a top quark. The final state is characterised by the presence of a hadronic $\tau$ decay, missing transverse momentum, $b$-tagged jets, a hadronically decaying $W$ boson, and the absence of any isolated electrons or muons with high transverse momenta. The data are consistent with the expected background from Standard Model processes. A statistical analysis leads to 95\% confidence-level upper limits on the product of branching ratios $ {\cal B}(t\rightarrow bH^\pm) \times {\cal B} (H^\pm\rightarrow \tau^{\pm}\nu) $, between 0.23% and 1.3% for charged Higgs boson masses in the range 80-160 GeV. It also leads to 95% confidence-level upper limits on the production cross section times branching ratio, $\sigma(pp \rightarrow tH^{\pm} + X) \times {\cal B}(H^{\pm} \rightarrow \tau^{\pm} \nu)$, between 0.76 pb and 4.5 fb, for charged Higgs boson masses ranging from 180 GeV to 1000 GeV. In the context of different scenarios of the Minimal Supersymmetric Standard Model, these results exclude nearly all values of $\tan\beta$ above one for charged Higgs boson masses between 80 GeV and 160 GeV, and exclude a region of parameter space with high $\tan\beta$ for $H^{\pm}$ masses between 200 GeV and 250 GeV.

2 data tables

The measured B(t->H+)xB(H+->tau+ nu) limit.

The measured P P --> t H+ --> t tau+nu limit.