A Reevaluation of the Gottfried sum

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badelek, B. ; et al.
Phys.Rev.D 50 (1994) R1-R3, 1994.
Inspire Record 358419 DOI 10.17182/hepdata.71293

We present a new determination of the nonsinglet structure function ${\mathit{F}}_{2}^{\mathit{p}}$ - ${\mathit{F}}_{2}^{\mathit{n}}$ at ${\mathit{Q}}^{2}$=4 ${\mathrm{GeV}}^{2}$ using recently measured values of ${\mathit{F}}_{2}^{\mathit{d}}$ and ${\mathit{F}}_{2}^{\mathit{n}}$/${\mathit{F}}_{2}^{\mathit{p}}$. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of 1/3.

4 data tables

Errors of F2(D) are the estimated total uncertainties and those on the ratio and difference are statistical only.

Values of the Gottfried Sum Rule integral (GS) defined as the integral between X(C=MIN) and X = 0.8 of (F2(P)-F2(N))DX/X.

No description provided.

More…

Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

The H1 & ZEUS collaborations Aaron, F.D. ; Abramowicz, H. ; Abt, I. ; et al.
JHEP 01 (2010) 109, 2010.
Inspire Record 836107 DOI 10.17182/hepdata.58304

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

89 data tables

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.045 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.065 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.085 GeV**2.

More…

Measurement of beauty production in DIS and F_2^bbbar extraction at ZEUS

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 69 (2010) 347-360, 2010.
Inspire Record 855232 DOI 10.17182/hepdata.56879

Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.

18 data tables

Total visible cross section for BBAR production and decay into MUON+JET.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of the muon transverse momentum.

More…

Measurement of the Longitudinal Proton Structure Function at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 682 (2009) 8-22, 2009.
Inspire Record 817462 DOI 10.17182/hepdata.53740

The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q^2, the proton structure functions FL and F2 have been extracted in the region 5*10^-4 &lt; x &lt;0.007 and 20 &lt; Q^2 &lt; 130 GeV^2.

50 data tables

The reduced cross section at Q**2 = 24 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 32 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 45 GeV**2 for centre-of-mass energy 318.

More…

Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 63 (2009) 171-188, 2009.
Inspire Record 810112 DOI 10.17182/hepdata.51856

The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.

21 data tables

Production cross section for (D+ + D-) mesons.

Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.

Measured D+- cross section as a function of Q**2.

More…

Measurement of D mesons production in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
JHEP 07 (2007) 074, 2007.
Inspire Record 749371 DOI 10.17182/hepdata.45530

Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.

24 data tables

Production cross section for all D0 mesons, those not originating fom D* decays and those originating from D* decays.

Production cross section for additional D* mesons (not decaying to D0) and all D* mesons.

Production cross section for D+ mesons.

More…

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Measurement of the open-charm contribution to the diffractive proton structure function.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 672 (2003) 3-35, 2003.
Inspire Record 624128 DOI 10.17182/hepdata.43831

Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

18 data tables

Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.

The differential cross section as a function of X(NAME=POMERON).

The differential cross section as a function of transverse momentum.

More…

Measurement of D*+- production in deep inelastic e+- p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 69 (2004) 012004, 2004.
Inspire Record 626816 DOI 10.17182/hepdata.46419

Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.

17 data tables

Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of X.

More…

Measurement of the neutral current cross section and F2 structure function for deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 21 (2001) 443-471, 2001.
Inspire Record 557597 DOI 10.17182/hepdata.46774

The cross section and the proton structure function F2 for neutral current deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 30 pb-1. The data were collected in 1996 and 1997 at a centre-of-mass energy of 300 GeV. They cover the kinematic range 2.7 < Q^2 < 30000 GeV2 and 6.10^-5 < x < 0.65. The variation of F2 with x and Q2 is well described by next-to-leading-order perturbative QCD as implemented in the DGLAP evolution equations.

6 data tables

The electromagnetic structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The corrections to the structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The relative uncertainties in the reduced cross section. See text of paper for more details. There is an additional 2 PCT overall normalization error not included, andan addtional uncertainty of 1 PCT at low Q**2.. DUNC - Uncorrelated systematic error. Correlated Systematic Errors:. D1 - positron finding and efficiency. D2 - positron scattering angle - A. D3 - positron scattering angle - B. D4 - positron energy scale. D5 - hadronic energy measurment - FCAL. D6 - hadronic energy measurment - BCAL. D7 - hadronic energy measurment - RCAL. D8 - hadronic energy flow - A. D9 - background subtractions. D10 - hadronic energy flow - B.

More…

Measurement of the proton structure function F2 at very low Q**2 at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 487 (2000) 53-73, 2000.
Inspire Record 527095 DOI 10.17182/hepdata.46969

A measurement of the proton structure function F_2(x,Q^2) is presented in the kinematic range 0.045 GeV^2 < Q^2 < 0.65 GeV^2 and 6*10^{-7} < x < 1*10^{-3}. The results were obtained using a data sample corresponding to an integrated luminosity of 3.9pb^-1 in e^+p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F_2 are typically less than 4%. At the low Q^2 values of the present measurement, the rise of F_2 at low x is slower than observed in HERA data at higher Q^2 and can be described by Regge theory with a constant logarithmic slope. The dependence of F_2 on Q^2 is stronger than at higher Q^2 values, approaching, at the lowest Q^2 values of this measurement, a region where F_2 becomes nearly proportional to Q^2.

24 data tables

Measured values of F2 at Q**2 = 0.045 GeV**2 as a function of X.

Measured values of F2 at Q**2 = 0.065 GeV**2 as a function of X.

Measured values of F2 at Q**2 = 0.085 GeV**2 as a function of X.

More…

Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…

ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables
More…

Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

24 data tables

Cross section for diffractive scattering.

Cross section for diffractive scattering.

Cross section for diffracitve scattering.

More…

Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.

4 data tables

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…

Measurement of the proton structure function F2 and sigma(tot)(gamma* p) at low Q**2 and very low x at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 432-448, 1997.
Inspire Record 445553 DOI 10.17182/hepdata.44513

A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.

8 data tables

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…

The A dependence of the nuclear structure function ratios

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 3-22, 1996.
Inspire Record 429851 DOI 10.17182/hepdata.32712

Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.

6 data tables

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.003 in the ratio.

More…

The Q**2 dependence of the structure function ratio F2 Sn / F2 C and the difference R Sn - R C in deep inelastic muon scattering

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 23-39, 1996.
Inspire Record 429850 DOI 10.17182/hepdata.32717

The Q 2 dependence of the structure function ratio F 2 Sn / F 2 C for 0.01 < x < 0.75 and 1 < Q 2 < 140 GeV 2 is reported. For x < 0.1 the size of shadowing decreases with ln Q 2 and the maximum rate is about 0.04 at x = 0.01. The rate decreases with x and is compatible with zero for x ⩾ 0.1. The difference R Sn − R C , where R is the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, is also given. No dependence on x is seen and the average value is 0.040 ± 0.021 (stat.) ± 0.026 (syst.) at a mean Q 2 of 10 GeV 2 .

17 data tables

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

More…

Accurate measurement of F2(d)/F2(p) and R(d)-R(p).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 487 (1997) 3-26, 1997.
Inspire Record 426595 DOI 10.17182/hepdata.32750

Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.002<x<0.4 at an average Q^2 of 5 GeV^2, is compatible with zero. The x and Q^2 dependence of F2d/F2p was measured in the kinematic range 0.001<x<0.8 and 0.1<Q^2<145 GeV^2 with small statistical and systematic errors. For x>0.1 the ratio decreases with Q^2.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma(L)/sigma(T).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 483 (1997) 3-43, 1997.
Inspire Record 424154 DOI 10.17182/hepdata.32752

The muon-proton and muon-deuteron inclusive deep inelastic scattering cross sections were measured in the kinematic range 0.002 < x < 0.60 and 0.5 < Q2 < 75 GeV2 at incident muon energies of 90, 120, 200 and 280 GeV. These results are based on the full data set collected by the New Muon Collaboration, including the data taken with a small angle trigger. The extracted values of the structure functions F2p and F2d are in good agreement with those from other experiments. The data cover a sufficient range of y to allow the determination of the ratio of the longitudinally to transversely polarised virtual photon absorption cross sections, R= sigma(L)/sigma(T), for 0.002 < x < 0.12 . The values of R are compatible with a perturbative QCD prediction; they agree with earlier measurements and extend to smaller x.

33 data tables

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

More…

Measurement of the proton and the deuteron structure functions, F2(p) and F2(d)

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Phys.Lett.B 364 (1995) 107-115, 1995.
Inspire Record 400018 DOI 10.17182/hepdata.48061

The proton and deuteron structure functions F2p and F2d were measured in the kinematic range 0.006<x<0.6 and 0.5<Q~2<75 GeV~2, by inclusive deep inelastic muon scattering at 90, 120, 200 and 280 GeV. The measurements are in good agreement with earlier high precision results. The present and earlier results together have been parametrised to give descriptions of the proton and deuteron structure functions F2 and their uncertainties over the range 0.006<x<0.9.

30 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the F2 structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS detector at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 399-424, 1996.
Inspire Record 420332 DOI 10.17182/hepdata.11638

We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

84 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Proton Structure Function ${F_2}$ at low ${x}$ and low ${Q~2}$ at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1996) 607-620, 1996.
Inspire Record 401305 DOI 10.17182/hepdata.44843

We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.

13 data tables

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

More…

Measurement of the diffractive structure function in deep elastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 569-584, 1995.
Inspire Record 395199 DOI 10.17182/hepdata.44902

This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

11 data tables

No description provided.

No description provided.

No description provided.

More…