Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.C 106 (2022) 034908, 2022.
Inspire Record 1800376 DOI 10.17182/hepdata.95210

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. We extract a $v_2$-independent and $m_{\rm inv}$-averaged signal $\Delta\gamma_{\rm sig}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$ =(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$, within pion $p_{T}$ = 0.2 - 0.8~\gevc and averaged over pseudorapidity ranges of $-1 < \eta < -0.05$ and $0.05 < \eta < 1$. This represents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result, at $95\%$ confidence level for the $m_{\rm inv}$-integrated CME contribution.

9 data tables

The $m_{\rm inv}$ dependences of the OS and SS pion pair multiplicities in 20-50$\%$ Au+Au collisions at 200 GeV.

The $m_{\rm inv}$ dependences of the $\gamma_{OS}$, $\gamma_{SS}$ in 20-50$\%$ Au+Au collisions at 200 GeV.

$m_{\rm inv}$ dependences of the relative excess of OS over SS pion pairs in 20-50$\%$ Au+Au collisions at 200 GeV.

More…

Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 128 (2022) 092301, 2022.
Inspire Record 1869023 DOI 10.17182/hepdata.127969

The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.

16 data tables

The centrality dependencies of the $v_{2}\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $v_{2}\{\psi_\mathrm{ZDC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $\Delta\gamma\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

More…

Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Harmonic decomposition of three-particle azimuthal correlations at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 98 (2018) 034918, 2018.
Inspire Record 1510300 DOI 10.17182/hepdata.96955

We present measurements of three-particle correlations for various harmonics in Au+Au collisions at energies ranging from $\sqrt{s_{{\rm NN}}}=7.7$ to 200 GeV using the STAR detector. The quantity $\langle\cos(m\phi_1+n\phi_2-(m+n)\phi_3)\rangle$ is evaluated as a function of $\sqrt{s_{{\rm NN}}}$, collision centrality, transverse momentum, $p_T$, pseudo-rapidity difference, $\Delta\eta$, and harmonics ($m$ and $n$). These data provide detailed information on global event properties like the three-dimensional structure of the initial overlap region, the expansion dynamics of the matter produced in the collisions, and the transport properties of the medium. A strong dependence on $\Delta\eta$ is observed for most harmonic combinations consistent with breaking of longitudinal boost invariance. Data reveal changes with energy in the two-particle correlation functions relative to the second-harmonic event-plane and provide ways to constrain models of heavy-ion collisions over a wide range of collision energies.

18 data tables

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 200 GeV Au+Au collisions.

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 62.4 GeV Au+Au collisions.

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 39 GeV Au+Au collisions.

More…