Date

Version 2
Search for a common baryon source in high-multiplicity pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 811 (2020) 135849, 2020.
Inspire Record 1791631 DOI 10.17182/hepdata.98857

We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV. The source radius is studied with low relative momentum p-p, $\bar{\rm{p}}$-$\bar{\rm{p}}$, p-$Λ$ and $\bar{\rm{p}}$-$\barΛ$ pairs as a function of the pair transverse mass $m_{\rm{T}}$ considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, $Λ$, and $\barΛ$ originate from the same source. Within the measured $m_{\rm{T}}$ range (1.1-2.2) GeV/$c^{2}$ the invariant radius of this common source varies between 0.85 and 1.3 fm. These results provide a precise reference for studies of the strong hadron-hadron interactions and for the investigation of collective properties in small colliding systems.

9 data tables

Source radius $r_{0}$ as a function of〈$m_{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

Source radius $r_0$ as a function of〈$m_\mathrm{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

Source radius $r_{0}$ as a function of〈$m_{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

More…

Version 3
Measurement of the cross sections of $\Xi^0_{\rm c}$ and $\Xi^+_{\rm c}$ baryons and branching-fraction ratio BR($\Xi^0_{\rm c} \rightarrow \Xi^-{\rm e}^+\nu_{\rm e}$)/BR($\Xi^0_{\rm c} \rightarrow \Xi^-\pi^+$) in pp collisions at 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 272001, 2021.
Inspire Record 1862793 DOI 10.17182/hepdata.115272

The $p_{\rm T}$-differential cross sections of prompt charm-strange baryons $\Xi^0_{\rm c}$ and $\Xi^+_{\rm c}$ were measured at midrapidity ($|y| < 0.5$) in proton$-$proton (pp) collisions at a centre-of-mass energy $\sqrt{s}=13$ TeV with the ALICE detector at the LHC. The $\Xi^0_{\rm c}$ baryon was reconstructed via both the semileptonic decay ($\Xi^{-}{\rm e^{+}}\nu_{\rm e}$) and the hadronic decay ($\Xi^{-}{\rm \pi^{+}}$) channels. The $\Xi^+_{\rm c}$ baryon was reconstructed via the hadronic decay ($\Xi^{-}\pi^{+}\pi^{+}$) channel. The branching-fraction ratio $\rm {\rm BR}(\Xi_c^0\rightarrow \Xi^-e^+\nu_e)/\rm {\rm BR}(\Xi_c^0\rightarrow \Xi^{-}\pi^+)=$ 1.38 $\pm$ 0.14 (stat) $\pm$ 0.22 (syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum ($p_{\rm T}$) dependence of the $\Xi^0_{\rm c}$- and $\Xi^+_{\rm c}$-baryon production relative to the ${\rm D^0}$-meson and to the $\Sigma^{0,+,++}_{\rm c}$- and $\Lambda^+_{\rm c}$-baryon production are reported. The baryon-to-meson ratio increases towards low $p_{\rm T}$ up to a value of approximately 0.3. The measurements are compared with various models that take different hadronisation mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronisation in electron$-$positron ($\rm e^+e^-$) and hadronic collisions.

10 data tables

Cross section of prompt $\rm \Xi_c^0$ baryon as a function of $p_{\rm T}$ in pp collisions at $\sqrt{s}=13$ TeV for $|y|<0.5$.

Cross section of prompt $\rm \Xi_c^+$ baryon as a function of $p_{\rm T}$ in pp collisions at $\sqrt{s}=13$ TeV for $|y|<0.5$.

$\rm \Xi_c^0/D^0$ ratio as a function of $p_{\rm T}$ in pp collisions at $\sqrt{s}=13$ TeV for $|y|<0.5$.

More…

Systematic study of flow vector decorrelation in $\mathbf{\sqrt{\textit{s}_{_{\bf NN}}}=5.02}$ TeV Pb-Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.C 109 (2024) 065202, 2024.
Inspire Record 2771093 DOI 10.17182/hepdata.158065

Measurements of the $p_{\rm T}$-dependent flow vector fluctuations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the $p_{\rm T}$-dependent flow vector fluctuations at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ with two-particle correlations. Significant $p_{\rm T}$-dependent fluctuations of the $\vec{V}_{2}$ flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to $\sim$15% being present in the 5% most central collisions. In parallel, no evidence of significant $p_{\rm T}$-dependent fluctuations of $\vec{V}_{3}$ or $\vec{V}_{4}$ is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than $5\sigma$ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high $p_{\rm T}$, which might be biased by $p_{\rm T}$-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma properties, and the dynamic evolution of the created system.

14 data tables

The ratio $v_{2}{2}/v_2[2]$ as a function of $p_{\rm T}$ in different centrality intervals

The ratio $v_{3}{2}/v_3[2]$ as a function of $p_{\rm T}$ in different centrality intervals

The ratio $v_{4}{2}/v_4[2]$ as a function of $p_{\rm T}$ in different centrality intervals

More…

First polarisation measurement of coherently photoproduced J/$\psi$ in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 865 (2025) 139466, 2025.
Inspire Record 2653626 DOI 10.17182/hepdata.158066

The first measurement of the polarisation of coherently photoproduced J$/\psi$ mesons in ultra-peripheral Pb-Pb collisions, using data at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, is presented. The J/$\psi$ meson is measured via its dimuon decay channel in the forward rapidity interval $-4.0 < y < -2.5$ using the ALICE detector at the CERN LHC. An event sample corresponding to an integrated luminosity of 750 $\mu\text{b}^{-1}$$\pm$ 5% (syst) is analysed. Hadronic activity is highly suppressed since the interaction is mediated by a photon. The polar and azimuthal angle distributions of the decay muons are measured, and the polarisation parameters $\mathbf{\lambda_{\theta}}$, $\mathbf{\lambda_{\varphi}}$, $\mathbf{\lambda_{\theta\varphi}}$ are extracted. The analysis is carried out in the helicity frame. The results are found to be consistent with a transversely polarised J/$\psi$. These values are compared with previous measurements by the H1 and ZEUS experiments. The polarisation parameters of coherent J/$\psi$ photoproduction in Pb-Pb collisions are found to be consistent with the $s$-channel helicity conservation hypothesis.

1 data table

Measured polarisation parameter in the lambda formalism for coherent J/psi in the helicity frame. The central values are given with statistical and total systematic uncertainties.


Measurement of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 04 (2025) 067, 2025.
Inspire Record 2848263 DOI 10.17182/hepdata.157865

The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}= 13$ TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6

2 data tables

Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.

The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.


Dielectron production in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.C 102 (2020) 055204, 2020.
Inspire Record 2829718 DOI 10.17182/hepdata.156903

The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{ee}}$ < 3.5 GeV/$c^{2}$ and $p_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.

1 data table

Charm production cross section at midrapidity


Particle production as a function of charged-particle flattenicity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.D 111 (2025) 012010, 2025.
Inspire Record 2811647 DOI 10.17182/hepdata.156787

This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2

17 data tables

Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)

Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)

Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)

More…

Multiplicity dependence of $\Upsilon$ production at forward rapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nucl.Phys.B 1011 (2025) 116786, 2025.
Inspire Record 2149692 DOI 10.17182/hepdata.156765

The measurement of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields as a function of the charged-particle multiplicity density, $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, using the ALICE experiment at the LHC, is reported in pp collisions at $\sqrt{s} =$ 13 TeV. The $\Upsilon$ meson yields are measured at forward rapidity ($2.5 < y < 4$) in the dimuon decay channel, whereas the charged-particle multiplicity is defined at central rapidity ($|\eta| < 1$). Both quantities are divided by their average value in minimum bias events to compute the self-normalized quantities. The increase of the self-normalized $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields is found to be compatible with a linear scaling with the self-normalized $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, within the uncertainties. The self-normalized yield ratios of excited-to-ground $\Upsilon$ states are compatible with unity within uncertainties. Similarly, the measured double ratio of the self-normalized $\Upsilon$(1S) to the self-normalized J/$\psi$ yields, both measured at forward rapidity, is compatible with unity for self-normalized charged-particle multiplicities beyond one. The measurements are compared with theoretical predictions incorporating initial or final state effects.

6 data tables

Self-normalized Upsilon(1S) yield as a function of the self-normalized charged-particle multiplicity.

Self-normalized Upsilon(2S) yield as a function of the self-normalized charged-particle multiplicity.

Self-normalized Upsilon(3S) yield as a function of the self-normalized charged-particle multiplicity.

More…

Investigating $\Lambda$ baryon production in p-Pb collisions in jets and the underlying event using angular correlations

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.C 111 (2025) 015201, 2025.
Inspire Record 2791853 DOI 10.17182/hepdata.156383

First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.

20 data tables

Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 0-20% multiplicity class p-Pb collisions

Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 20-50% multiplicity class p-Pb collisions

Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 50-80% multiplicity class p-Pb collisions

More…

Rapidity dependence of antideuteron coalescence in pp collisions at $\sqrt{s}$ = 13 TeV with ALICE

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Lett.B 860 (2025) 139191, 2025.
Inspire Record 2807680 DOI 10.17182/hepdata.156190

The production yields of antideuterons and antiprotons are measured in pp collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV, as a function of transverse momentum ($p_{\rm T}$) and rapidity ($y$), for the first time rapidity-differentially up to $|y|= 0.7$. The measured spectra are used to study the $p_{\rm T}$ and rapidity dependence of the coalescence parameter $B_2$, which quantifies the coalescence probability of antideuterons. The $p_{\rm T}$ and rapidity dependence of the obtained $B_2$ is extrapolated for $p_{\rm T}> 1.7$ GeV/$c$ and $|y|>0.7$ using the phenomenological antideuteron production model implemented in PYTHIA 8.3 as well as a baryon coalescence afterburner model based on EPOS 3. Such measurements are of interest to the astrophysics community, since they can be used for the calculation of the flux of antinuclei from cosmic rays, in combination with coalescence models.

28 data tables

Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0 to 0.1.

Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0.1 to 0.2.

Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0.2 to 0.3.

More…