Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.

17 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

integrated production cross section of J/$\psi$.

More…

Centrality dependence of charged jet production in p-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
CERN-EP-2016-052, 2016.
Inspire Record 1427026 DOI 10.17182/hepdata.72903

Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-$k_{\rm T}$ algorithm for resolution parameters $R = 0.2$ and $R = 0.4$ in the transverse momentum range 20 to 120 GeV/$c$. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

31 data tables

pp reference spectrum, obtained by scaling down the measured charged jets at 7 TeV to 5.02 TeV for R = 0.2 jets.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 0-20%.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 20-40%.

More…

Measurement of an excess in the yield of J/$\psi$ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222301, 2016.
Inspire Record 1395296 DOI 10.17182/hepdata.72639

We report on the first measurement of an excess in the yield of J/$\psi$ at very low transverse momentum ($p_{\rm T}< 0.3$ GeV/$c$) in peripheral hadronic Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/$\psi$ in the rapidity range $2.5<y<4$ reaches about 7 (2) in the $p_{\rm T}$ range 0-0.3 GeV/$c$ in the 70-90% (50-70%) centrality class. The J/$\psi$ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/$\psi$ is the underlying physics mechanism. If confirmed, the observation of J/$\psi$ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the Quark-Gluon Plasma.

4 data tables

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

More…

Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 81-93, 2016.
Inspire Record 1394682 DOI 10.17182/hepdata.71455

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum ($p_{\rm T}$) in minimum-bias p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with ALICE at the LHC. The measurement covers the $p_{\rm T}$ interval $0.5<p_{\rm T}<12$ GeV/$c$ and the rapidity range $-1.06 < y_{\rm cms} < 0.14$ in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor $R_{\rm pPb}$ was calculated by comparing the $p_{\rm T}$-differential invariant cross section in p-Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at $\sqrt{s}= 2.76$ TeV and $\sqrt{s} =7$ TeV. The $R_{\rm pPb}$ is consistent with unity within uncertainties of about 25%, which become larger for $p_{\rm T}$ below 1 GeV/$c$. The measurement shows that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-$p_{\rm T}$ yield in Pb-Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p-Pb collisions are described by recent model calculations that include cold nuclear matter effects.

2 data tables

Double-differential cross section for the production of electrons, i.e. (electron + positron)/2, from heavy-flavour hadron decays as a function of transverse momentum for minimum-bias p--Pb collisions in the rapidity interval $-1.065 < y_{\rm cms} < 0.135$. The systematic uncertainties do not include an additional normalization uncertainty of 3.7%.

Nuclear modification factor $R_{\text{pPb}}$ of electrons from heavy-flavour hadron decays as a function of transverse momentum for minimum-bias p--Pb collisions in the rapidity interval $-1.065 < y_{\rm cms} < 0.135$.


Suppression of $\psi$(2S) production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 12 (2014) 073, 2014.
Inspire Record 1296307 DOI 10.17182/hepdata.66529

The ALICE Collaboration has studied the inclusive production of the charmonium state $\psi(2S)$ in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy $\sqrt{s_{NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed at forward ($2.03<y_{cms}<3.53$) and backward ($-4.46<y_{cms}<-2.96$) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections $\sigma_{\psi(2S)}$, both integrated and as a function of the transverse momentum $p_{T}$, for the two $y_{cms}$ domains. The results are compared to those obtained for the 1S vector state (J/$\psi$), by showing the ratios between the production cross sections, as well as the double ratios $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pPb}/[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pp}$ between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive $\psi(2S)$ is evaluated and compared to the measurement of the same quantity for J/$\psi$ and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the $\psi(2S)$ compared to that measured for J/$\psi$ and to models. These observations represent a clear indication for sizeable final state effects on $\psi(2S)$ production.

9 data tables

The cross section ratios B.R. sigma_Psi(2S)/ B.R. sigma_JPsi obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is systematic.

The double ratio [sigma(Psi(2S))/sigma(J/Psi)]_pA/[sigma(Psi(2S))/sigma(J/Psi)]_pp for p-Pb and Pb-p collisions. First uncertainty is statistical, the second one is the correlated systematic, while the third is the uncorrelated systematic.

The Psi(2S) nuclear modification factor RpA measured in pPb and Pbp collisions. The first uncertainty is statistical, the second one is the correlated systematic and the third the uncorrelated systematic.

More…

Centrality dependence of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 11 (2015) 127, 2015.
Inspire Record 1380193 DOI 10.17182/hepdata.69212

We present a measurement of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, $p_{\rm T}$, in the backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The $p_{\rm T}$-differential J/$\psi$ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average $p_{\rm T}$ and $p^2_{\rm T}$ values. The nuclear modification factor, $Q_{\rm pPb}$, is presented as a function of centrality for the three rapidity intervals, and, additionally, at backward and forward rapidity, as a function of $p_{\rm T}$ for several centrality classes. At mid- and forward rapidity, the J/$\psi$ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing $p_{\rm T}$ of the J/$\psi$. At backward rapidity, the $Q_{\rm pPb}$ is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.

11 data tables

Differential cross sections dsigma_JPsi/dydpt as function of pt at backward (-4.46<y_cms<-2.96) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections d^2sigma^cent_JPsi/dydpt as function of pt for six centrality classes at forward (2.03<y_cms<3.53) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections dsigma^cent_JPsi/dy for four centrality classes at mid-rapidity (-1.37<y_cms<0.43). The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over centrality.

More…

Measurement of dijet $\mathbf{{\textit{k}}_{T}}$ in p-Pb collisions at $\mathbf{\sqrt{{\textit{s}}_{NN}}=5.02}$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 746 (2015) 385-395, 2015.
Inspire Record 1351451 DOI 10.17182/hepdata.69477

A measurement of dijet correlations in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector is presented. Jets are reconstructed from charged particles measured in the central tracking detectors and neutral energy deposited in the electromagnetic calorimeter. The transverse momentum of the full jet (clustered from charged and neutral constituents) and charged jet (clustered from charged particles only) is corrected event-by-event for the contribution of the underlying event, while corrections for underlying event fluctuations and finite detector resolution are applied on an inclusive basis. A projection of the dijet transverse momentum, $k_{\rm Ty} = p_\rm{T,jet}^\rm{ch+ne} \; \rm{sin}(\Delta\varphi_{\rm{dijet}})$ with $\Delta\varphi_{\rm{dijet}}$ the azimuthal angle between a full and charged jet and $p_\rm{T,jet}^\rm{ch+ne}$ the transverse momentum of the full jet, is used to study nuclear matter effects in p-Pb collisions. This observable is sensitive to the acoplanarity of dijet production and its potential modification in p-Pb collisions with respect to pp collisions. Measurements of the dijet $k_{\rm Ty}$ as a function of the transverse momentum of the full and recoil charged jet, and the event multiplicity are presented. No significant modification of $k_{\rm Ty}$ due to nuclear matter effects in p-Pb collisions with respect to the event multiplicity or a PYTHIA8 reference is observed.

10 data tables

Dijet |k_{T,y}| distributions in p-Pb collisions in the 0-40% V0A multiplicity event class.

Dijet |k_{T,y}| distributions in p-Pb collisions in the 0-40% V0A multiplicity event class.

Dijet |k_{T,y}| distributions in p-Pb collisions in the 0-40% V0A multiplicity event class.

More…

Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at $\sqrt{s_\rm{NN}} = 5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 749 (2015) 68-81, 2015.
Inspire Record 1346963 DOI 10.17182/hepdata.68911

Charged jet production cross sections in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV measured with the ALICE detector at the LHC are presented. Using the anti-$k_{\rm T}$ algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters $R = 0.2$ and $R = 0.4$. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, $R_{\rm pPb}$, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at $\sqrt{s} = 7$ TeV. In the transverse momentum range $20 \le p_{\rm T,ch\ jet} \le 120$ GeV/$c$, $R_{\rm pPb}$ is found to be consistent with unity, indicating the absence of strong nuclear matter effects on jet production. Major modifications to the radial jet structure are probed via the ratio of jet production cross sections reconstructed with the two different resolution parameters. This ratio is found to be similar to the measurement in pp collisions at $\sqrt{s} = 7$ TeV and to the expectations from PYTHIA pp simulations and NLO pQCD calculations at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

13 data tables

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for $R = 0.2$ measured with the ALICE detector.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 calculated with a Lorentz-boosted NLO pQCD calculation using POWHEG+PYTHIA8 with CTEQ6.6+EPS09.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector. Eta-Interval 0.25 < $\eta$ < 0.65.

More…

Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at $\sqrt{s} = 2.76$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 012001, 2015.
Inspire Record 1296860 DOI 10.17182/hepdata.64030

The $p_{\rm T}$-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at $\sqrt{s} = 2.76$ TeV in the transverse momentum range 0.5 < $p_{\rm T}$ < 12 GeV/$c$ with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.

1 data table

Double-differential cross section for the production of electrons, i.e. (electron + positron)/2, from heavy-flavour hadron decays as a function of transverse momentum at mid-rapidity. The systematic uncertainties do not include an additional normalization uncertainty of 1.9%.


Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 112012, 2015.
Inspire Record 1328629 DOI 10.17182/hepdata.68515

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent with prior measurements carried out at the LHC by the ATLAS collaboration. The jet charged particle multiplicity rises monotonically with increasing jet $p_{\rm T}$, in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% ($\langle R_{\rm 80} \rangle$) of the reconstructed jet $p_{\rm T}$. The fragmentation of leading jets with $R=0.4$ using scaled $p_{\rm T}$ spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and $\langle R_{\rm 80} \rangle$ distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.

73 data tables

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

More…