Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

16 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 107, 2024.
Inspire Record 2673888 DOI 10.17182/hepdata.139720

A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

102 data tables

Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

More…

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Search for periodic signals in the dielectron and diphoton invariant mass spectra using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 10 (2023) 079, 2023.
Inspire Record 2660845 DOI 10.17182/hepdata.140955

A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.

24 data tables

The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

More…

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

30 data tables

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The scalar $p_{T}$ sum, denoted as $H_{T}$, of the two reconstructed $\ell$ and all small-radius jets.

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The angular separation $\Delta R$ between the two $\ell$.

Distribution of an input to the BDT classifier in the $3\ell$ category: The angular separation between $\ell_{3}$ and the nearest small-radius jet (j). The $\ell_{3}$ in is defined as the $\ell$ that is not part of the opposite-sign $\ell\ell$ pair of lowest mass.

More…

Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $\mu\mu$bb and $\tau\tau$bb final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-007, 2024.
Inspire Record 2760544 DOI 10.17182/hepdata.145999

A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}_1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m_{\mathrm{a}_1}$ and are observed to be in the range (0.17-3.3) $\times$ 10$^{-4}$ and (1.7-7.7) $\times$ 10$^{2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m_{\mathrm{a}_1}$ values between 15 and 60 GeV.

4 data tables

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \mu\mu$bb) as functions of $m_{\text{a}_{1}}$. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \tau\tau$bb) in percent as functions of $m_{\text{a}_{1}}$, for the combination of the $\mu\tau_{\text{h}}$, $e\tau_{\text{h}}$, and $e\mu$ channels. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow ll$bb) in percent, where $l$ stands for muons or $\tau$ leptons, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions $m_{\text{a}_{1}}$ for 2HDM+S models, independent of the type and tan $\beta$ parameter. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

More…

Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

23 data tables

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

Search for central exclusive production of top quark pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV with tagged protons

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-TOP-21-007, 2023.
Inspire Record 2140837 DOI 10.17182/hepdata.127701

A search for the central exclusive production of top quark-antiquark pairs ($\mathrm{t\bar{t}}$) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$^{-1}$. The $\mathrm{t\bar{t}}$ decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.

1 data table

Expected and observed 95% confidence level (CL) upper limits for the cross section of $\mathrm{pp} \rightarrow \mathrm{p t \bar{t} p}$, for the dilepton and $\ell+$jets channels separately and combined. The green and yellow bands show the 68 and 95% intervals, respectively, for the expected upper limit.


Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 041802, 2024.
Inspire Record 2661228 DOI 10.17182/hepdata.140434

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

6 data tables

Definition of ABCD bins and yields in data, per match category. The predicted yield in the bin with the smallest backgrounds (bin D) is extracted from the simultaneous four-bin fit by assuming zero signal, which corresponds to $(\text{Obs. B} \times \text{Obs. C}) / (\text{Obs. A})$ in this limit.

Systematic uncertainties in the analysis. The jet uncertainties are larger in 2017 because of noise issues with the ECAL endcap. The tracking inefficiency in 2016 is caused by the unexpected saturation of photodiode signals in the tracker.

Simulated muon reconstruction efficiency of standard (blue squares) and displaced (red circles) reconstruction algorithms as a function of transverse vertex displacement $v_{xy}$. The two dashed vertical gray lines denote the ends of the fiducial tracker and muon detector regions, respectively.

More…

Exclusive and dissociative J/$\psi$ photoproduction, and exclusive dimuon production, in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 112004, 2023.
Inspire Record 2654315 DOI 10.17182/hepdata.144875

The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.

6 data tables

Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval

Exclusive J/psi photoproduction cross section in p-Pb UPC.

Dissociative J/psi photoproduction cross section in p-Pb UPC.

More…

Measurement of inclusive J/$\psi$ pair production cross section in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 045203, 2023.
Inspire Record 2648593 DOI 10.17182/hepdata.144368

The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.

1 data table

Inclusive JPSI pair cross section in $2.5 < y < 4.0$.


Search for direct production of winos and higgsinos in events with two same-charge leptons or three leptons in $pp$ collision data at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2023) 150, 2023.
Inspire Record 2660233 DOI 10.17182/hepdata.134245

A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

70 data tables

Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

More…

Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 84 (2024) 27, 2024.
Inspire Record 2685711 DOI 10.17182/hepdata.141611

The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.

13 data tables

Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Searches for physics beyond the standard model with the $M_\mathrm{T2}$ variable in hadronic final states with and without disappearing tracks in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 3, 2020.
Inspire Record 1753215 DOI 10.17182/hepdata.90834

Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.

52 data tables

Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.

More…

Search for a third-generation leptoquark coupled to a $\tau$ lepton and a b quark through single, pair, and nonresonant production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-19-016, 2023.
Inspire Record 2688366 DOI 10.17182/hepdata.141707

A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.

20 data tables

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $S_\mathrm{T}^\mathrm{MET} > 800\,\mathrm{GeV}$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $\chi < 4$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.

More…

Measurement of the J/$\psi $ photoproduction cross section over the full near-threshold kinematic region

The GlueX collaboration Adhikari, S. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 108 (2023) 025201, 2023.
Inspire Record 2649988 DOI 10.17182/hepdata.140802

We report the total and differential cross sections for $J/\psi$ photoproduction with the large acceptance GlueX spectrometer for photon beam energies from the threshold at 8.2~GeV up to 11.44~GeV and over the full kinematic range of momentum transfer squared, $t$. Such coverage facilitates the extrapolation of the differential cross sections to the forward ($t = 0$) point beyond the physical region. The forward cross section is used by many theoretical models and plays an important role in understanding $J/\psi$ photoproduction and its relation to the $J/\psi-$proton interaction. These measurements of $J/\psi$ photoproduction near threshold are also crucial inputs to theoretical models that are used to study important aspects of the gluon structure of the proton, such as the gluon Generalized Parton Distribution (GPD) of the proton, the mass radius of the proton, and the trace anomaly contribution to the proton mass. We observe possible structures in the total cross section energy dependence and find evidence for contributions beyond gluon exchange in the differential cross section close to threshold, both of which are consistent with contributions from open-charm intermediate states.

4 data tables

$\gamma p \rightarrow J/\psi p$ total cross sections in bins of beam energy. The first uncertainties are statistical, and the second are systematic. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross sections 8.2–9.28 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 8.93 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross sections 9.28–10.36 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 9.86 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

More…

Version 2
Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 063, 2022.
Inspire Record 2037744 DOI 10.17182/hepdata.134011

Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than $355$ GeV and the other top quark decays into $\ell \nu b$ are presented using 139 fb$^{-1}$ of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at $\sqrt{s}=13$ TeV is measured to be $\sigma = 1.267 \pm 0.005 \pm 0.053$ pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of $4.2\%$. The cross-section is measured differentially as a function of variables characterising the $t\bar{t}$ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to set limits on the Wilson coefficients of the dimension-six operators $O_{tG}$ and $O_{tq}^{(8)}$ in the effective field theory framework.

275 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <ul> <li> NLEP = 1, either E or MU, PT &gt; 27 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 0.4, PT &gt; 26 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 <li> NJETS &gt;= 1, R=1, PT &gt; 355 GeV, ABS ETA &lt; 2.0, top-tagged </ul><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>SIG (<a href="1651136742?version=1&table=Table 1">Table 1</a> ) <li>DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 4">Table 4</a> ) <li>DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 5">Table 5</a> ) <li>1/SIG*DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 7">Table 7</a> ) <li>DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 8">Table 8</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 10">Table 10</a> ) <li>DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 13">Table 13</a> ) <li>DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 14">Table 14</a> ) <li>1/SIG*DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 16">Table 16</a> ) <li>DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 19">Table 19</a> ) <li>DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 20">Table 20</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 22">Table 22</a> ) <li>DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 25">Table 25</a> ) <li>DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 26">Table 26</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 28">Table 28</a> ) <li>DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 31">Table 31</a> ) <li>DSIG/DHT (<a href="1651136742?version=1&table=Table 32">Table 32</a> ) <li>1/SIG*DSIG/DHT (<a href="1651136742?version=1&table=Table 34">Table 34</a> ) <li>DSIG/DNJETS (<a href="1651136742?version=1&table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DNJETS (<a href="1651136742?version=1&table=Table 37">Table 37</a> ) <li>DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 38">Table 38</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 40">Table 40</a> ) <li>DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 43">Table 43</a> ) <li>DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 44">Table 44</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 46">Table 46</a> ) <li>DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 49">Table 49</a> ) <li>DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 50">Table 50</a> ) <li>1/SIG*DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 52">Table 52</a> ) <li>DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 55">Table 55</a> ) </ul><br/> Statistical covariance matrices: <ul> <li>DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 3">Table 3</a> ) <li>DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 6">Table 6</a> ) <li>DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 9">Table 9</a> ) <li>DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 12">Table 12</a> ) <li>DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 15">Table 15</a> ) <li>DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 18">Table 18</a> ) <li>DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 21">Table 21</a> ) <li>DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 24">Table 24</a> ) <li>DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 27">Table 27</a> ) <li>DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 30">Table 30</a> ) <li>DSIG/DHT (<a href="1651136742?version=1&table=Table 33">Table 33</a> ) <li>DSIG/DNJETS (<a href="1651136742?version=1&table=Table 36">Table 36</a> ) <li>DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 39">Table 39</a> ) <li>DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 42">Table 42</a> ) <li>DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 45">Table 45</a> ) <li>DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 48">Table 48</a> ) <li>DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 51">Table 51</a> ) <li>DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 54">Table 54</a> ) </ul><br/> Inter-spectra statistical covariance matrices: <ul> <li>Statistical covariance between DSIG/DPT_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 104">Table 104</a> ) <li>Statistical covariance between DSIG/DPT_TLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 105">Table 105</a> ) <li>Statistical covariance between DSIG/DPT_TLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 106">Table 106</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 107">Table 107</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 108">Table 108</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 109">Table 109</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 110">Table 110</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 111">Table 111</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 112">Table 112</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 113">Table 113</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 114">Table 114</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 115">Table 115</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 116">Table 116</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 117">Table 117</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 118">Table 118</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 119">Table 119</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 120">Table 120</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 121">Table 121</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 122">Table 122</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 123">Table 123</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 124">Table 124</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 125">Table 125</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 126">Table 126</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 127">Table 127</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 128">Table 128</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 129">Table 129</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 130">Table 130</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 131">Table 131</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 132">Table 132</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 133">Table 133</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 134">Table 134</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 135">Table 135</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 136">Table 136</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 137">Table 137</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 138">Table 138</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 139">Table 139</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 140">Table 140</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 141">Table 141</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 142">Table 142</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 143">Table 143</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 144">Table 144</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 145">Table 145</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 146">Table 146</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 147">Table 147</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 148">Table 148</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 149">Table 149</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 150">Table 150</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 151">Table 151</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 152">Table 152</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 153">Table 153</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 154">Table 154</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 155">Table 155</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 156">Table 156</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 157">Table 157</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 158">Table 158</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DSIG (<a href="1651136742?version=1&table=Table 159">Table 159</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 160">Table 160</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 161">Table 161</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 162">Table 162</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 163">Table 163</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 164">Table 164</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 165">Table 165</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 166">Table 166</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 167">Table 167</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 168">Table 168</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 169">Table 169</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DSIG (<a href="1651136742?version=1&table=Table 170">Table 170</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 171">Table 171</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 172">Table 172</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 173">Table 173</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 174">Table 174</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 175">Table 175</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 176">Table 176</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 177">Table 177</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 178">Table 178</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 179">Table 179</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 180">Table 180</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DHT (<a href="1651136742?version=1&table=Table 181">Table 181</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 182">Table 182</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 183">Table 183</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 184">Table 184</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 185">Table 185</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 186">Table 186</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 187">Table 187</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 188">Table 188</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 189">Table 189</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 190">Table 190</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 191">Table 191</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 192">Table 192</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DHT (<a href="1651136742?version=1&table=Table 193">Table 193</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 194">Table 194</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 195">Table 195</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 196">Table 196</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 197">Table 197</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 198">Table 198</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 199">Table 199</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 200">Table 200</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 201">Table 201</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 202">Table 202</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 203">Table 203</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 204">Table 204</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 205">Table 205</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DHT (<a href="1651136742?version=1&table=Table 206">Table 206</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 207">Table 207</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 208">Table 208</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 209">Table 209</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 210">Table 210</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 211">Table 211</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 212">Table 212</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 213">Table 213</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 214">Table 214</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 215">Table 215</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 216">Table 216</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 217">Table 217</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 218">Table 218</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 219">Table 219</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DHT (<a href="1651136742?version=1&table=Table 220">Table 220</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 221">Table 221</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 222">Table 222</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 223">Table 223</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 224">Table 224</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 225">Table 225</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 226">Table 226</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 227">Table 227</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 228">Table 228</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 229">Table 229</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 230">Table 230</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 231">Table 231</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 232">Table 232</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 233">Table 233</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 234">Table 234</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 235">Table 235</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 236">Table 236</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 237">Table 237</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 238">Table 238</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 239">Table 239</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 240">Table 240</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 241">Table 241</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 242">Table 242</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 243">Table 243</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 244">Table 244</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 245">Table 245</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 246">Table 246</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 247">Table 247</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 248">Table 248</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 249">Table 249</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 250">Table 250</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 251">Table 251</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 252">Table 252</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 253">Table 253</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 254">Table 254</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 255">Table 255</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 256">Table 256</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 257">Table 257</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 258">Table 258</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 259">Table 259</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 260">Table 260</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 261">Table 261</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 262">Table 262</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 263">Table 263</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 264">Table 264</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 265">Table 265</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 266">Table 266</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 267">Table 267</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 268">Table 268</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 269">Table 269</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 270">Table 270</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 271">Table 271</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 272">Table 272</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 273">Table 273</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 274">Table 274</a> ) </ul><br/> <u>2D:</u><br/> Spectra: <ul> <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 56">Table 56</a> ) <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 57">Table 57</a> ) <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 58">Table 58</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 59">Table 59</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 60">Table 60</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 61">Table 61</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 68">Table 68</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 69">Table 69</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 70">Table 70</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 71">Table 71</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 72">Table 72</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 73">Table 73</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 80">Table 80</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 81">Table 81</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 82">Table 82</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 83">Table 83</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 84">Table 84</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 85">Table 85</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 92">Table 92</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 93">Table 93</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 94">Table 94</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 95">Table 95</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 96">Table 96</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 97">Table 97</a> ) </ul><br/> Statistical covariance matrices: <ul> <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 1st and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 62">Table 62</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 2nd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 63">Table 63</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 2nd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 64">Table 64</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 65">Table 65</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 66">Table 66</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 3rd bins of NJETS (<a href="1651136742?version=1&table=Table 67">Table 67</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 1st and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 74">Table 74</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 2nd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 75">Table 75</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 2nd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 76">Table 76</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 77">Table 77</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 78">Table 78</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 3rd bins of PT_THAD (<a href="1651136742?version=1&table=Table 79">Table 79</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 1st and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 86">Table 86</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 2nd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 87">Table 87</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 2nd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 88">Table 88</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 89">Table 89</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 90">Table 90</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 3rd bins of PT_THAD (<a href="1651136742?version=1&table=Table 91">Table 91</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 1st and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 98">Table 98</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 2nd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 99">Table 99</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 2nd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 100">Table 100</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 101">Table 101</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 102">Table 102</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 3rd bins of NJETS (<a href="1651136742?version=1&table=Table 103">Table 103</a> ) </ul><br/>

Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Absolute differential cross-section as a function of $p_T^{t,h}$ at particle level in the boosted topology. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

More…

Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 824, 2023.
Inspire Record 2662303 DOI 10.17182/hepdata.141494

A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.

2 data tables

Observed and expected 95% CL upper limits on the heavy Majorana neutrino mixing element $\vert V_{\mu N} \vert^{2}$ as a function of $m_N$ in the Phenomenological Type-I Seesaw model.

Cutflow for a selection of signal samples used in this analysis. The flavour-aligned scenario (in which $\vert V_{\mu N} \vert^{2}=1$) is considered for heavy Majorana neutrino samples. The event yields include all correction factors applied to simulation, and is normalised to 140 fb$^{-1}$. The `Skim' selection requires 2 baseline muons and 2 jets satisfying the object definitions described in Section 3 and $m_{jj} > 150$ GeV. Uncertainties are statistical only.