Jet structure from dihadron correlations in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 73 (2006) 054903, 2006.
Inspire Record 694429 DOI 10.17182/hepdata.151167

Dihadron correlations at high transverse momentum in d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). From these correlations we extract several structural characteristics of jets; the root-mean-squared (RMS) transverse momentum of fragmenting hadrons with respect to the jet sqrt(<j_T^2>), the mean sine-squared angle between the scattered partons <sin^2(phi_jj)>, and the number of particles produced within the dijet that are associated with a high-p_T particle (dN/dx_E distributions). We observe that the fragmentation characteristics of jets in d+Au collisions are very similar to those in p+p collisions and that there is also little dependence on the centrality of the d+Au collision. This is consistent with the nuclear medium having little influence on the fragmentation process. Furthermore, there is no statistically significant increase in the value of <sin^2(phi_jj)> from p+p to d+Au collisions. This constrains the amount of multiple scattering that partons undergo in the cold nuclear medium before and after a hard-collision.

46 data tables

Measured $\gamma\gamma$ invariant mass distribution for 6 < $p_T$ < 7 GeV/$c$ in central $d$+Au collisions.

The comparison of near-side yield, near-side width, far-side yield, and far-side width as a function of $p_T$ of charged hadrons. These are obtained for $\pi^{\pm}$ - $h^{\pm}$ correlation from PYTHIA, with a trigger pion of 6 - 10 GeV/$c$.

Fully corrected assorted charged pion-hadron conditional pair distributions for $d$+Au collisions centrality 0-80% and $p$+$p$ collisions. The trigger $\pi^{\pm}$s are within 5 < $p_{T,trig}$ < 10 GeV/$c$ and are correlated with hadrons with $p_{T,assoc}$ 0.4-1.0 GeV/$c$, 1.0-2.0 GeV/$c$, 2.0-3.0 GeV/$c$, and 3.0-5.0 GeV/$c$.

More…

Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 95 (2017) 034910, 2017.
Inspire Record 1486072 DOI 10.17182/hepdata.145924

We present the first measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow $v_2$ in high-multiplicity $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A comparison of these results with previous measurements in high-multiplicity $d$$+$Au and $^3{\rm He}$$+$Au collisions demonstrates a relation between $v_2$ and the initial collision eccentricity $\varepsilon_2$, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured $v_2$ and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.

2 data tables

The ratio of the two harmonics ($\Sigma Q^{BBC-S}$)$_{p+p}$/($\Sigma Q^{BBC-S}$)$_{pAu}$.

$v_2$ of charged hadrons within $|\eta|$ < 0.35 in 0-5% $p$+Au central collisions, compared to hydrodynamic calculations using the SONIC model, matched to the same multiplicity as the data.


Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 024909, 2009.
Inspire Record 819672 DOI 10.17182/hepdata.143606

We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.

23 data tables

Centrality classes and average number of participant nucleons $\langle N_{part} \rangle$ obtained from a Glauber Monte Carlo simulation of the BBC and ZDC responses for Au+Au collision at $\sqrt{s_{NN}}$ = 200 GeV.

Comparison of Res{$\Psi_n$;X} and Res{$\Psi_n$;Y} with Res{$\Psi_n$} for the BBC event plane and ZDC-SMD event plane as a function of centrality.

Charged hadron $v_2$($p_T$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the two-particle cumulant method, the BBC event plane, and the ZDC-SMD event plane for the indicated centralities.

More…

Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

86 data tables

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

More…

Correlated production of p and anti-p in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 649 (2007) 359-369, 2007.
Inspire Record 731666 DOI 10.17182/hepdata.143520

Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.

9 data tables

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge-inclusive baryon triggers and associated particles for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge selected $\bar{p}$ and $p$ triggers both with associated $p$ for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge selected $\bar{p}$ and $p$ triggers both with associated $p$ for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

More…

Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

15 data tables

$v_2$ vs. $p_T$ for charged hadrons for Au+Au collisions.

$v_2$ vs. $p_T$ for charged hadrons for Cu+Cu collisions.

$v_2$ vs. $p_T$ for charged hadrons. divided by $k$ times ($k = 3.1$) the $p_T$-integrated $v_2$ (centrality) for Au+Au and Cu+Cu collisions.

More…

Measurement of neutral mesons in p+p collisions at sqrt(s) = 200 GeV and scaling properties of hadron production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 83 (2011) 052004, 2011.
Inspire Record 855102 DOI 10.17182/hepdata.143371

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K^0_S , \omega, \eta prime, and \phi mesons in p + p collisions at = 200 GeV. Measurements \omega and \phi production in different decay channels give consistent results. New results for the \phi are in agreement with previously published data and extend the measured pT coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-pT and characterizing the low-pT regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

15 data tables

Parameters of the Tsallis fit with Eq. 8 in the paper with all parameters free to vary. Cross sections are in $\mu$b for $J/\psi$ and $\psi^{\prime}$ and in mb for all other particles.

Parameters of the power law fit with Eq. 3 in the paper. Units of $A$ are mb(GeV/$c$)$^{\upsilon + 2}$.

Constant and linear fits to the power law and Tsallis fit parameters. The last column (Prob.) gives the probability estimated by the $\chi^2$/$n.d.f.$ of the fit.

More…

Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

4 data tables

Polar angular decay coefficient $\lambda_{\theta}$ as a function of transverse momentum for four reference frames and three $p_T$ bins. The numbers in the CS frame for the $p_T$ = 2-3 GeV/$c$ bin are 90% confidence level upper limits.

"Mixed" angular decay coefficient $\lambda_{\theta \phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

Azimuthal angular decay coefficient $\lambda_{\phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

More…

Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 072004, 2018.
Inspire Record 1672014 DOI 10.17182/hepdata.143196

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

36 data tables

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

More…

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

2 data tables

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).