Showing 25 of 853 results
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.
Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.
(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).
(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).
Comparison of the $\sqrt{s_{_{NN}}}$ dependence of $v^{even}_{1}$ and $v_3$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c in 0-10 central Au+Au collisions.
The production of Z boson pairs in proton-proton (pp) collisions, pp $\to$ (Z/$\gamma^*$)(Z/$\gamma^*$) $\to$ 2$\ell$ 2$\ell'$, where $\ell,\ell'$ = e or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected during 2016-2018. The ZZ production cross section, $\sigma_{\text{tot}}$ (pp $\to$ ZZ) = 17.2 $\pm$ 0.3 (stat) $\pm$ 0.5 (syst) $\pm$ 0.4 (theo) $\pm$ 0.3 (lumi) pb, measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60 $\lt m_{\ell^+\ell^-} \lt $ 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT for all leptons in the event
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT for all Z bosons in the event
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT of the ZZ system
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of the invariant mass of the ZZ system
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of azimuthal separation of the two Z bosons
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of ∆R separation of the two Z bosons
Measured fiducial cross section for each data sample and combined. The first uncertainty is statistical, the second is experimental systematic, and the third is associated with the integrated luminosity.
Measured total σ(pp → ZZ) cross section for each data sample and combined. The first uncertainty is statistical, the second is experimental systematic, the third is theoretical systematic. The fourth uncertainty is associated with the integrated luminosity.
Expected and observed one-dimensional 95% CL limits on aTGC parameters. The corresponding constrains on EFT parameters are estimated using the transformation from Ref. [65].
Expected and observed one-dimensional 95% CL limits on aTGC parameters. The corresponding constrains on EFT parameters are estimated using the transformation from Ref. [65].
A search is performed for the rare decay W$^\pm\to\pi^\pm\gamma$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV. Data corresponding to an integrated luminosity of 137 fb$^{-1}$ were collected during 2016 to 2018. This novel analysis exploits the W boson production in top quark pair events. The leptonic decay of the W boson from one of the top quarks is used to tag the event, and the b quark jets are used to reduce the background from the hadronization of light-flavor quarks and gluons. The W boson originating from the other top quark is used to search for the W$^\pm\to\pi^\pm\gamma$ decay. Such events are characterized by an isolated track and an isolated photon of large transverse momentum. The W$^\pm\to\pi^\pm\gamma$ decay is not observed. An upper exclusion limit is set to this branching fraction, corresponding to 1.50$\times$ 10$^{-5}$ at 95% confidence level.
The product of signal efficiency and acceptance per year and per lepton channel (muon or electron).
Expected and observed upper exclusion limits on the branching fraction of the decay of a W boson into a pion and a photon, using 2016 to 2018 data.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where squarks have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where squarks have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where squarks have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where squarks have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
'Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 32.1 fb$^{-1}$.
'Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 32.1 fb$^{-1}$.
'Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 32.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.
<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 2</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 3</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 4</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Exclusion 1 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 1 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 2 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 2 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 3 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with ± 1 σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with ± 1 σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct slepton production. A fit of slepton signals to the m<sub>T2</sub><sup>100</sup> spectrum is used to derive the limit, which is projected into the Δ m(ℓ̃, χ̃<sub>1</sub><sup>0</sup>) vs. m(ℓ̃) plane. Slepton ℓ̃ refers to the scalar partners of left- and right-handed electrons and muons, which are assumed to be fourfold mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>). The gray region is the ẽ<sub>R</sub> limit from LEP [20,24], while the blue region is the fourfold mass degenerate slepton limit from ATLAS Run 1 [41].
<b>Exclusion 3 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with ± 1 σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with ± 1 σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct slepton production. A fit of slepton signals to the m<sub>T2</sub><sup>100</sup> spectrum is used to derive the limit, which is projected into the Δ m(ℓ̃, χ̃<sub>1</sub><sup>0</sup>) vs. m(ℓ̃) plane. Slepton ℓ̃ refers to the scalar partners of left- and right-handed electrons and muons, which are assumed to be fourfold mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>). The gray region is the ẽ<sub>R</sub> limit from LEP [20,24], while the blue region is the fourfold mass degenerate slepton limit from ATLAS Run 1 [41].
<b>Upper Limits 1</b> The first two columns present observed (N<sub>obs</sub>) and expected (N<sub>exp</sub>) event yields in the inclusive signal regions. The latter are obtained by the background-only fit of the control regions, and the errors include both statistical and systematic uncertainties. The next two columns show the observed 95% CL upper limits on the visible cross-section (⟨εσ⟩<sub>obs</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows what the 95% CL upper limit on the number of signal events would be, given an observed number of events equal to the expected number (and +- 1 σ deviations from the expectation) of background events. The last column indicates the discovery p-value (p(s = 0)), which is capped at 0.5.
<b>Cutflow 1</b> Observed event yields and exclusion fit results with the signal strength parameter set to zero for the exclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Acceptances 1</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 2</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 3</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 4</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 5</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 6</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 7</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 8</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 9</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 10</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 11</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 12</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 13</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 14</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 15</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 16</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 17</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 18</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 19</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 20</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 21</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 22</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 23</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 24</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 25</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 26</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 27</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 28</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 29</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 30</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 31</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 32</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 33</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 34</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Efficiencies 1</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 2</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 3</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 4</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 5</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 6</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 7</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 8</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 9</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 10</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 11</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 12</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 13</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 14</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 15</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 16</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 17</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 18</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 19</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 20</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 21</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 22</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 23</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 24</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 25</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 26</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 27</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 28</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 29</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 30</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 31</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 32</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 33</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 34</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Cross-Sections 1</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 2</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 3</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 4</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 5</b> Cross-sections of the wino--bino signal grid for each production process in the caption.
<b>Cross-Sections 6</b> Cross-sections of the wino--bino signal grid for each production process in the caption.
<b>Cross-Sections 7</b> Total cross-sections of the slepton simplified model signal grid. Slepton refers to a the scalar partners of the left- and right-handed electrons and muons, which are assumed to be mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>).
<b>Kinematics 5</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 6</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 7</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 8</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 9</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 10</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 11</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 12</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 13</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 14</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 15</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Upper Limits 2</b> Numbers show 95% CL model-dependent upper limits on the inclusive Higgsino signal cross-sections.
<b>Upper Limits 3</b> Numbers show 95% CL model-dependent upper limits on the inclusive Higgsino signal cross-sections.
<b>Upper Limits 4</b> Numbers show 95% CL model-dependent upper limits on the inclusive signal cross-sections of the wino--bino model.
<b>Upper Limits 5</b> Numbers show 95% CL model-dependent upper limits on the inclusive signal cross-sections of the wino--bino model.
<b>Upper Limits 6</b> Numbers show the 95% CL model-dependent upper limits on the slepton signal cross-sections, assuming a fourfold mass degeneracy m(ẽ<sub>L,R</sub>) = m(μ̃<sub>L,R</sub>).
<b>Upper Limits 7</b> Numbers show the 95% CL model-dependent upper limits on the slepton signal cross-sections, assuming a fourfold mass degeneracy m(ẽ<sub>L,R</sub>) = m(μ̃<sub>L,R</sub>).
<b>Upper Limits 8</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Upper Limits 9</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Upper Limits 10</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Cutflow 2</b> Observed event yields and exclusion fit results with the signal strength parameter set to zero for the exclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Cutflow 3</b> Observed event yields and background-only fit results for the inclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Exclusion 4</b> Nominal observed and expected CLs values for Higgsino signals.
<b>Exclusion 5</b> Nominal observed and expected CLs values for wino--bino signals.
<b>Exclusion 6</b> Nominal observed and expected CLs values for slepton signals.
<b>Upper Limits 11</b> Upper limits on observed (expected) Higgsino simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Upper Limits 12</b> Upper limits on observed (expected) wino--bino simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Upper Limits 13</b> Upper limits on observed (expected) slepton simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Cutflow 4</b> Event counts for Higgsino H and slepton ℓ signals after sequential selections for the inclusive SRℓℓ-m<sub>ℓℓ</sub> and SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Weighted events are normalised to mathcalL = 36.1 fb<sup>-1</sup> and the inclusive cross section σ, while raw MC events are also shown. The generator filter with efficiency ε<sub>filt</sub> applied to the Higgsino signal requires truth E<sub>T</sub><sup>miss</sup> > 50 GeV and at least 2 leptons with p<sub>T</sub> > 3 GeV, while only the E<sub>T</sub><sup>miss</sup> > 50 GeV requirement is applied to the slepton signal. The mathcalB refers to the branching ratio Z<sup>(*)</sup> → ℓ<sup>+</sup>ℓ<sup>-</sup> in the Higgsino processes. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions.
<b>Cutflow 5</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs), followed by those optimised for Higgsinos and sleptons. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 6</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs), followed by those optimised for Higgsinos and sleptons. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 7</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement followed by those optimised for Higgsinos and sleptons. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 8</b> Event counts for the χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs). ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
A search for new phenomena in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three $b$-tagged jets is presented. The search uses 36.1 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. The dominant sources of background are estimated using parameterized extrapolations, based on observables at medium jet multiplicity, to predict the $b$-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits are extracted constraining four simplified models of $R$-parity-violating supersymmetry that feature either gluino or top-squark pair production. The exclusion limits reach as high as 2.1 TeV in gluino mass and 1.2 TeV in top-squark mass in the models considered. In addition, an upper limit is set on the cross-section for Standard Model $t\bar{t}t\bar{t}$ production of 60 fb (6.5 $\times$ the Standard Model prediction) at 95% confidence level. Finally, model-independent limits are set on the contribution from new phenomena to the signal-region yields.
The expected background and observed data with five jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with six jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with seven jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with eight jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with nine jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with ten jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with eleven jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with twelve-or-more jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with five jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with six jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with seven jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with eight jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with nine jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with ten-or-more jets in the different b-tag multiplicity bins for the 60 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with five jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with six jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with seven jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with eight jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with nine jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
The expected background and observed data with ten-or-more jets in the different b-tag multiplicity bins for the 80 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.
Observed exclusion contours on the gluino and neutralino masses in a model where the gluino decays via a virtual top squark to two top quarks and the lightest neutralino, with the neutralino decaying to three light quarks (neutralino --> uds) via the RPV coupling lambda''_112.
Expected exclusion contours on the gluino and neutralino masses in a model where the gluino decays via a virtual top squark to two top quarks and the lightest neutralino, with the neutralino decaying to three light quarks (neutralino --> uds) via the RPV coupling lambda''_112.
Observed exclusion contours on the gluino and stop masses in a model where the gluino decays to a top quark and a top squark, with the top squark decaying to an s-quark and a b-quark via a non-zero lambda''_323 RPV coupling.
Expected exclusion contours on the gluino and stop masses in a model where the gluino decays to a top quark and a top squark, with the top squark decaying to an s-quark and a b-quark via a non-zero lambda''_323 RPV coupling.
Observed exclusion contours on the gluino and neutralino masses in a model with a gluino decaying to two light quarks (q=u,d,s,c) and the neutralino, which then decays to two light quarks and a charged lepton or a neutrino.
Expected exclusion contours on the gluino and neutralino masses in a model with a gluino decaying to two light quarks (q=u,d,s,c) and the neutralino, which then decays to two light quarks and a charged lepton or a neutrino.
Observed exclusion contours on the stop and neutralino masses in a model where the stop decays to a third-generation quark and a higgsino, which decays via the RPV coupling lambda''_323.
Expected exclusion contours on the stop and neutralino masses in a model where the stop decays to a third-generation quark and a higgsino, which decays via the RPV coupling lambda''_323.
Observed exclusion contours on the stop and neutralino masses in a model where the stop decays to a top and a bino-like neutralino, which decays via the RPV coupling lambda''_323.
Expected exclusion contours on the stop and neutralino masses in a model where the stop decays to a top and a bino-like neutralino, which decays via the RPV coupling lambda''_323.
Observed upper limits on the model cross-section in units of pb as a function of the gluino and neutralino masses in a model where the gluino decays via a virtual top squark to two top quarks and the lightest neutralino, with the neutralino decaying to three light quarks (neutralino --> uds) via the RPV coupling lambda''_112.
Observed upper limits on the model cross-section in units of pb as a function of the gluino and stop masses in a model where the gluino decays to a top quark and a top squark, with the top squark decaying to an s-quark and a b-quark via a non-zero lambda''_323 RPV coupling.
Observed upper limits on the model cross-section in units of pb as a function of the gluino and neutralino masses in a model with a gluino decaying to two light quarks (q=u,d,s,c) and the neutralino, which then decays to two light quarks and a charged lepton or a neutrino.
Observed upper limits on the model cross-section in units of pb as a function of the stop and neutralino masses in a model where the stop decays to a third-generation quark and a higgsino, which decays via the RPV coupling lambda''_323.
Observed upper limits on the model cross-section in units of pb as a function of the stop and neutralino masses in a model where the stop decays to a top and a bino-like neutralino, which decays via the RPV coupling lambda''_323.
Acceptance as a function of the gluino and stop masses in a model where the gluino decays to a top quark and a top squark, with the top squark decaying to an s-quark and a b-quark via a non-zero lambda''_323 RPV coupling.
Efficiency as a function of the gluino and stop masses in a model where the gluino decays to a top quark and a top squark, with the top squark decaying to an s-quark and a b-quark via a non-zero lambda''_323 RPV coupling.
Acceptance as a function of the gluino and neutralino masses in a model with a gluino decaying to two light quarks (q=u,d,s,c) and the neutralino, which then decays to two light quarks and a charged lepton or a neutrino.
Efficiency as a function of the gluino and neutralino masses in a model with a gluino decaying to two light quarks (q=u,d,s,c) and the neutralino, which then decays to two light quarks and a charged lepton or a neutrino.
Cut flow for a model of gluino pair production where the gluino decays to two (u, d, s, c) quarks and the neutralino, which then decays to two (u, d, s, c) quarks and a lepton via a lambda' RPV coupling, where each RPV decay can produce any of the four first and second generation leptons (e, mu, nu_e, nu_mu) with equal probability (m_gluino = 1800 GeV, m_neutralino = 900 GeV). The events are skimmed by requiring at least one electron or muon that satisfies very loose identification criteria, where the lepton satisfies pT > 25 GeV. The efficiency of this cut is considered in the quoted efficiency of the lepton trigger requirement. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed.
Cut flow for a model of gluino pair production where each gluino decays to a top quark and a top squark, with the top squark decaying to an s- and a b- quark via a non-zero lambda''_323 RPV coupling (m_gluino = 1600 GeV, m_stop = 1000 GeV). The events are skimmed by requiring at least one electron or muon that satisfies very loose identification criteria, where the lepton satisfies pT > 25 GeV. The efficiency of this cut is considered in the quoted efficiency of the lepton trigger requirement. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed.
Cut flow for a model of gluino pair production where each gluino decays via an off-shell top squark to two top quarks and the lightest neutralino, with the neutralino decaying to three light quarks (neutralino -> uds) via the RPV coupling lambda''_112 (m_gluino = 2000 GeV, m_neutralino = 941 GeV). The events are skimmed by requiring at least one electron or muon that satisfies very loose identification criteria, where the lepton satisfies pT > 25 GeV. The efficiency of this cut is considered in the quoted efficiency of the lepton trigger requirement. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed.
Cut flow for a model of right-handed top squark pair production with the top squark decaying to the lightest supersymmetric particle (LSP) which is considered to be purely higgsino. The higgsino-like LSP decays through the non-zero RPV coupling lambda''_323 (m_stop = 975 GeV, m_neutralino = 600 GeV). The events are skimmed by requiring at least one electron or muon that satisfies very loose identification criteria, where the lepton satisfies pT > 25 GeV. The efficiency of this cut is considered in the quoted efficiency of the lepton trigger requirement. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.