Measurement of the production cross section of pairs of isolated photons in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
CERN-EP-2021-105, 2021.
Inspire Record 1887997 DOI 10.17182/hepdata.104925

A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

9 data tables

Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Integrated fiducial cross section measured in data and from different predictions.

More…

Precise determination of the $B^0_s$-$\overline{B}^0_s$ oscillation frequency

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
LHCb-PAPER-2021-005, 2021.
Inspire Record 1857623 DOI 10.17182/hepdata.105881

 Mesons comprising a beauty quark and a strange quark can oscillate between particle ($B^0_s$) and antiparticle ($\overline{B}^0_s$) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, $\Delta m_{s}$. Here we present a measurement of $\Delta m_{s}$ using $B^0_s \rightarrow D_s^- \pi^+$ decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. This measurement improves upon the current $\Delta m_{s}$ precision by a factor of two. The oscillation frequency is found to be $\Delta m_{s}$ = 17.7683 $\pm$ 0.0051 $\pm$ 0.0032 ps$^{-1}$, where the first uncertainty is statistical and the second systematic. We combine this result with previous LHCb measurements to determine $\Delta m_{s}$ = 17.7656 $\pm$ 0.0057 ps$^{-1}$.

0 data tables

Exclusive dimuon production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
CERN-EP-2020-138, 2020.
Inspire Record 1832628 DOI 10.17182/hepdata.104407

Exclusive dimuon production in ultraperipheral collisions (UPC), resulting from photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei, $\mathrm{PbPb}(\gamma\gamma) \rightarrow \mu^+\mu^- (\mathrm{Pb}^{(\star)}\mathrm{Pb}^{(\star)} )$, is studied using $\mathcal{L}_{\mathrm{int}} = 0.48$ nb$^{-1}$ of $\sqrt{s_\mathrm{NN}}=5.02$ TeV lead-lead collision data at the LHC with the ATLAS detector. Dimuon pairs are measured in the fiducial region $p_{\mathrm{T}\mu} > 4$ GeV, $|\eta_{\mu}| < 2.4$, invariant mass $m_{\mu\mu} > 10$ GeV, and $p_{\mathrm{T,\mu\mu}} < 2$ GeV. The primary background from single-dissociative processes is extracted from the data using a template fitting technique. Differential cross sections are presented as a function of $m_{\mu\mu}$, absolute pair rapidity ($|y_{\mu\mu}|$), scattering angle in the dimuon rest frame ($|\cos \vartheta^{\star}_{\mu\mu}|$) and the colliding photon energies. The total cross section of the UPC $\gamma \gamma \rightarrow \mu^{+}\mu^{-}$ process in the fiducial volume is measured to be $\sigma_{\mathrm{fid}}^{\mu\mu} = 34.1 \! \pm \! 0.3 \mathrm{(stat.)} \! \pm \! 0.7 \mathrm{(syst.)}$ $\mu\mathrm{b}$. Generally good agreement is found with calculations from STARlight, which incorporate the leading-order Breit-Wheeler process with no final-state effects, albeit differences between the measurements and theoretical expectations are observed. In particular, the measured cross sections at larger $|y_{\mu\mu}|$ are found to be about 10-20% larger in data than in the calculations, suggesting the presence of larger fluxes of photons in the initial state. Modification of the dimuon cross sections in the presence of forward and/or backward neutron production is also studied and is found to be associated with a harder incoming photon spectrum, consistent with expectations.

41 data tables

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.

More…

Event-by-event multi-harmonic correlations of different flow amplitudes in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}=2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-005, 2021.
Inspire Record 1839720 DOI 10.17182/hepdata.110113

The genuine event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 2.76$ TeV by the ALICE Collaboration at the Large Hadron Collider. The results are obtained with recently developed observables, the higher order Symmetric Cumulants (SC), in the midrapidity region $|\eta| < 0.8$ and the transverse momentum range $0.2 < p_{\mathrm T} < 5.0$ GeV/$c$. These higher order observables show the same robustness against systematic biases arising from nonflow effects as the two-harmonic SC. The new results cannot be interpreted in terms of lower order flow measurements, since they are dominated by different patterns of event-by-event flow fluctuations. The results are compared with expectations from initial state models such as T$_{\rm{R}}$ENTo and next-to-leading order perturbative-QCD+saturation model of initial conditions, followed by iEBE-VISHNU and EKRT viscous hydrodynamic calculations. Model comparisons provide an indication of the development of genuine correlations between the elliptic $v_2$, the triangular $v_3$ and the quadrangular $v_4$ flow amplitudes during the collective evolution of the medium. The comparison with the predictions for the correlations between $v_2$, $v_3$ and the pentagonal flow magnitude $v_5$ illustrate the need for further tuning of model parameterizations. Therefore, these results can provide new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions, complementary to previous flow measurements.

6 data tables

Centrality dependence of ${\rm SC}(2,3,4)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.

Centrality dependence of ${\rm SC}(2,3,5)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.

Centrality dependence of ${\rm SC}(2,4,6)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.

More…

Version 2
Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$^{-1}$ of $\sqrt{s}$ =13 TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2021) 143, 2021.
Inspire Record 1827025 DOI 10.17182/hepdata.95664

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The results are interpreted in the context of various $R$-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector.

75 data tables

Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).

Observed metSig distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).

Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-GGd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).

More…

Measurements of dihadron correlations relative to the event plane in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($\pt$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at $\snn=200$~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phis=|\phit-\psiEP|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $\pt$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with $\phis$, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity ($\deta$) dependence of the near-side correlation, sensitive to long range $\deta$ correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of $\phis$. The ridge appears to drop with increasing $\phis$ while the jet-like component remains approximately constant. ...

550 data tables

red data points

black histogram

flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0