Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in $\sqrt{s_{_{\rm NN}}} =$ 200 GeV Au+Au Collisions

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Lett.B 745 (2015) 40-47, 2015.
Inspire Record 1315466 DOI 10.17182/hepdata.73493

A data-driven method was applied to measurements of Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance $\Delta\eta$-dependent and $\Delta\eta$-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is $\Delta\eta$-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of $\eta$ within the measured range of pseudorapidity $|\eta|<1$. The relative flow fluctuation was found to be $34\% \pm 2\% (stat.) \pm 3\% (sys.)$ for particles of transverse momentum $p_{T}$ less than $2$ GeV/$c$. The $\Delta\eta$-dependent part may be attributed to nonflow correlations, and is found to be $5\% \pm 2\% (sys.)$ relative to the flow of the measured second harmonic cumulant at $|\Delta\eta| > 0.7$.

27 data tables

The second harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

The third harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

The second harmonic four-particle cumulant for ($\eta_{\alpha}$, $\eta_{\alpha}$, $\eta_{\beta}$, $\eta_{\beta}$) quadruplets for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and $\phi$ meson in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 062301, 2016.
Inspire Record 1383879 DOI 10.17182/hepdata.71571

We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2012) 019, 2012.
Inspire Record 1093734 DOI 10.17182/hepdata.68040

Using inelastic proton-proton interactions at sqrt(s) = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

27 data tables

$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<1$.

$\sqrt{s} = 7$ TeV, $p_T > 500 $ MeV, $|\eta|<1$.

$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<2$.

More…

Initial-State Radiation Measurement of the e+e- -> pi+pi-pi+pi- Cross Section

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 85 (2012) 112009, 2012.
Inspire Record 1086164 DOI 10.17182/hepdata.57561

We study the process e+e- -> pi+pi-pi+pi-gamma, with a photon emitted from the initial-state electron or positron, using 454.3 fb^-1 of data collected with the BABAR detector at SLAC, corresponding to approximately 260,000 signal events. We use these data to extract the non-radiative sigma(e+e- ->pi+pi-pi+pi-) cross section in the energy range from 0.6 to 4.5 Gev. The total uncertainty of the cross section measurement in the peak region is less than 3%, higher in precision than the corresponding results obtained from energy scan data.

1 data table

The dressed and undressed cross sections for the reaction E+ E- --> PI+ PI- PI+ PI-. Statistical errors only.


J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Measurement of Z-pair production in e+ e- collisions and constraints on anomalous neutral gauge couplings

The ALEPH collaboration Schael, S. ; Barate, R. ; Bruneliere, R. ; et al.
JHEP 04 (2009) 124, 2009.
Inspire Record 824816 DOI 10.17182/hepdata.52431

The ZZ production cross section is measured from a data sample corresponding to a total integrated luminosity of 452 pb(-')(1), collected by the ALEPH experiment at LEP at centre-of-mass energies from 192 to 209 GeV. Individual cross sections, ext racted at six centre-of-mass energies, are found to be in agreement with Standard Model calculations. The results are used to set limits on anomalous neutral gauge couplings.

1 data table

Measured E+ E- --> Z0 Z0 cross sections.


Measurement of W pair production in e+ e- collisions at centre-of-mass energies from 183-GeV to 209-GeV.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 38 (2004) 147-160, 2004.
Inspire Record 653296 DOI 10.17182/hepdata.48582

The W + W- production cross section is measured from a data sample corresponding to a total integrated luminosity of 683 pb-1, collected by the ALEPH experiment at LEP at centre-of-mass energies from

13 data tables

The measured cross section for the E NU E NU final state. The DSYS error is the typical systematic error.

The measured cross section for the E NU MU NU final state. The DSYS error is the typical systematic error.

The measured cross section for the E NU TAU NU final state. The DSYS error is the typical systematic error.

More…